• Title/Summary/Keyword: strengthening ratio

Search Result 352, Processing Time 0.026 seconds

Analysis of Strengthened Concrete Deep Beam Using Strut-Tie Model (보강된 콘크리트 깊은 보의 스트럿-타이 모델 해석)

  • 곽형욱;송하원;변근주;지호석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.817-822
    • /
    • 2002
  • In this paper, the strengthening analysis by strut-tie model for strengthened shear failed RC deep beam by the so-called the Steel Clamping Unit (SCU), which is a strengthening equipment, is carried out. The analysis considers the span-to-depth ratio, the existence of prestressing and stirrup, the shape of shear crack, and the strengthening position of the SCU. Based on analytical results, optimized strengthening analysis and design are carried out by investigating the behavior of the strengthened deep beams. The comparison between analytical results and experimental results shows that optimum strengthening effect by the SCU can be obtained when compressive strut zone created by SCU is away from major shear crack of the beam as far as possible.

  • PDF

Numerical Study for the Estimation of Strengthening Effect of Concrete Column Strengthened with CFS (CFS 보강 콘크리트 기둥의 보강효과 산정을 위한 해석적 연구)

  • 이상호;허원석;박재우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.709-714
    • /
    • 1999
  • The objectives of this study are to estimate the strengthening effect of concrete column strengthened with CFS and to provide basic guideline for the strengthening design with laminated composite materials. Analysis stress-strain model of laminated CFS is presented based on laminate theory. This model has been implemented in the algorithm of evaluating confinement effect of CFS. From results of the algorithm, stress-strain relationship of confined concrete is obtained. Using this stress-strain relationship, section analyses of circular and rectangular concrete columns strengthened with CFS are carried our, and load-moment interaction and load-ductility curves of the columns are obtained. To evaluate the strengthening effects of CFS, parametric study is also conducted for the angle of ply, thickness of CFS, shape of section, and reinforcement ratio. Based on this investigation, design recommendations and basic guidelines for the strengthening design with CFS are proposed.

  • PDF

Flexural Strengthening Effect of Carbon Fiber Sheet Considering Different Status of Damages in RC Beams (RC 보의 손상 상태를 고려한 탄소섬유시트의 휨보강 효과)

  • Park, Sung-Soo;Jo, Su-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.157-167
    • /
    • 2002
  • In most cases, quantity of reinforcement is determined without regard to the difference of initial strain, and status of damages when calculated the strengthening in flexure at beams. Thus, the purpose of this study is to investigate the flexural strengthening efficiency and behavior of RC beams strengthened with carbon fiber sheets(CFS) considering different status of damages. in this paper, a nonlinear analysis program considering rip-off strength and residual stress of steel bars and concrete in different status of damages is developed to predict the flexural behavior of CFS strengthened beams. Rip-off strength equation is obtained by modifying moment of inertia in the Robert's equation. And conformed developed nonlinear analysis program in variable of strengthening CFS amount and status of damages(initial, case1, case2, case3) and tension reinforcement ratio(0.2~1.0%).

Buckling behavior of strengthened perforated plates under shear loading

  • Cheng, Bin;Li, Chun
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.367-382
    • /
    • 2012
  • This paper is dedicated to the buckling behaviors of strengthened perforated plates under edge shear loading, which is a typical load pattern of steel plates in civil engineering, especially in plate and box girders. The square plates considered each has a centric circular hole and is simply supported on four edges in the out-of-plane direction. Three types of strengthening stiffeners named ringed stiffener (RS), flat stiffener (FSA and FSB) and strip stiffener (SSA, SSB and SSC) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behavior of unstrengthened and strengthened perforated plates. Results show that most of the strengthened perforated plates behave higher buckling strengths than the unstrengthened ones, while the enhancements in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types as well as plate geometric parameters including plate slenderness ratio and hole diameter to plate width ratio. The critical slenderness ratios of shear loaded strengthened perforated plates, which determine the practical buckling pattern (i.e., elastic or elasto-plastic buckling) of the plates, are also studied. Based on the contrastive analyses of strengthening efficiency considering the influence of stiffener consumption, the most efficient cutout-strengthening methods for shear loaded perforated square plates with different slenderness ratios and circular hole diameter to plate width ratios are preliminarily identified.

Repair and Strengthening Methods for Concrete Structures using Sprayed Fiber Reinforced Polymers - Material Property of Sprayed FRP - (Sprayed FRP 공법에 의한 콘크리트 구조물의 보수.보강법 개발에 관한 연구 - Sprayed FRP를 구성하는 재료특성에 관한 연구 -)

  • Lee, Li-Hyung;Lee, Kang-Seok;Son, Young-Sun;Byeon, In-Hee;Lim, Byung-Ho;Na, Jung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.141-144
    • /
    • 2006
  • The main purpose of this study is to develop a Sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing carbon or glass shot fibers and the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the Sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In order to investigate the material property of Sprayed FRP, this study carried out tensile tests of the material specimens which are changed with the combinations of various variables such as the length of shot fiber and mixture ratio of shot fiber and resin. These variables are set to have the material strength equal to one layer of the FRP sheet. As a result, the optimal length of glass and carbon shot fibers were derived into 3.8cm, and the optimal mixture ratio was also deriver into 1:2 from each variable. And also, the thickness of Sprayed FRP to have the strength equal to one layer of FRP sheet was finally calculated.

  • PDF

Experimental Study for Shear Behavior of RC Beam Strengthened with Channel-type FRP Beam (채널형 FRP빔으로 보강된 RC보의 전단거동에 관한 실험적 연구)

  • Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • A recent and promising method for shear strengthening of reinforced concrete(RC) members is the use of near surface mounted(NSM) fiber reinforced polymer(FRP) reinforcement. In the NSM method, the reinforcement is embedded in grooves cut onto the surface of the member to be strengthened and filled with an appropriate binding agent such as epoxy paste or cement grout. This paper illustrates a research program on shear strengthening of RC beams with NSM channel-type FRP beams which is developed in this study. The objective of this study is to clarify the role of channel-type FRP beam embedded to the beam web for shear strengthening of reinforced concrete beams. Included in the study are effectiveness in terms of spacing and angle of channel-type FRP beams, strengthening method, and shear span ratio. the study also aims to understand the additional shear capacity due to glass fiber reinforced polymer beams and carbon reinforced polymer beams. And anther objective is to study the failure modes, shear strengthening effect on ultimate force and load deflection behavior of RC beams embedded with channel-type FRP beams on the shear region of the beams.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Strength prediction of corrosion reinforced concrete columns strengthened with concrete filled steel tube under axial compression

  • Liang, Hongjun;Jiang, Yanju;Lu, Yiyan;Hu, Jiyue
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.481-492
    • /
    • 2020
  • Twenty-two corrosion-damaged columns were simulated through accelerated steel corrosion tests. Eight specimens were directly tested to failure under axial load, and the remaining specimens were tested after concrete-filled steel tube (CFST) strengthening. This study aimed to investigate the damage of RC columns after corrosion and their restoration and enhancement after strengthening. The research parameters included different corrosion degrees of RC columns, diameter-to-thickness ratio of steel tube and the strengthening concrete strength. Experimental results showed that CFST strengthening method could change the failure mode of corrosion-damaged RC columns from brittleness to ductility. In addition to the bearing capacity provided by the strengthening materials, it can also provide an extra 26.7% amplification because of the effective confinement provided by steel tubes. The influence of corrosion on reinforcement and concrete was quantitatively analysed and considered in the design formula. The proposed formula accurately predicted the bearing capacity of the strengthened columns with a maximum error of only 7.68%.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Characteristic Strength and Deformation of SFRC Considering Steel Fiber Factor and Volume fraction (강섬유 계수 및 혼입률을 고려한 SFRC의 강도 및 변형 특성)

  • Lee Hyun-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.759-766
    • /
    • 2004
  • The addition of steel fiber with concrete significantly improves the engineering properties of structural members, notably shear strength. The purpose of this study is to determine the steel fiber shape, aspect ratio and volume fraction ratio in a point of practical usage as structural members. Steel fiber factor and volume fraction are also considered to verify the strengthening effect in member level. From the reviewing of previous researches and analyzing of consecutive material test results, the optimum shape and length of steel fiber, which can have a good strengthening effects were defined as a hooked end type and larger than 1.5 times of maximum gravel size. Analyzing the test results of strength and deformation capacity, aspect ratio 75 and volume fraction $1.5\%$ can be having a maximum strengthening effect of steel fiber. Also steel fiber factor, tensile splitting strength, and flexural strength are found as key parameter in shear strengthening effect in member level.