• Title/Summary/Keyword: strengthening

Search Result 5,126, Processing Time 0.038 seconds

An Experimental Study on Flexural Repair of Reinforced Concrete Beams with the CFRP Sheet (탄소섬유시트를 사용한 철근콘크리트 구조물의 휨 보강에 관한 실험적 연구)

  • 박정원;박상렬;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.781-786
    • /
    • 2000
  • This paper presents the behavior and strenghening effect of reinforced concrete rectangular beams strengthened sing CFRP sheets with different strengthening level. In general, normally strengthened beams are failed by interfacial shear failure (delamination) within concrete, instead of by tensile failure of the CFRP sheets. The delamination occurred suddenly and the concrete cover cracked vertically by flexure was spalled off due to the release energy. The ultimate load considerably increased with an increase of strengthening level, while the ultimate deflection significantly decreased. The tensile force of CFRP sheets and average shear stress of concrete at delamination failure were curvilinearly proportional to the strengthening level. Therefore, the increment of ultimate load obtained by strengthening was curvilinearly proportional to th strengthening level.

  • PDF

An Experimental Study on the Strengthening Effect of CFS on Concrete Cylinder under Load History (하중이력을 받은 콘크리트 압축공시체의 탄소섬유쉬트 보강효과에 관한 실험적 연구)

  • Bae, Ju-Seong;Kim, Kyoung-Soo;Kim, Jae-Wook;Ko, Yeong-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.169-176
    • /
    • 2000
  • In the strengthening of the existed reinforced concrete(RC) structures, it is required that the more rational strengthening method and the amounts of strengthening materials would be decided under the consideration of the present state of RC structures. Therefore, this study examined the strengthening effects of concrete cylinders strengthened with carbon fiber sheet(CFS). In this studying we modeled the reduction of internal forces and the initial strains of concrete cylinders as the load history over the elastic limit. From the results, it revealed that the strengthening of two layer CFS was more effective on the concrete cylinders under the action of load history such as cyclic and cracking load.

  • PDF

Repair and Strengthening Methods for Concrete Structures using Sprayed Fiber Reinforced Polymers - Strengthening Performance of Reinforced Concrete Beams - (Sprayed FRP 공법에 의한 콘크리트 구조물의 보수.보강법 개발에 관한 연구 - 철근콘크리트 보의 보강성능 평가 -)

  • Lee, Kang-Seok;Son, Young-Sun;Byeon, In-Hee;Lee, Moon-Sung;Na, Jung-Min;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.133-136
    • /
    • 2006
  • The main purpose of this study is to develop a Sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing carbon or glass shot fibers and the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the Sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In this study, a series of experiments are carried out to evaluate the strengthening effects of the flexural and shear concret beams strengthened with the Sprayed FRP method. The results revealed that the strengthening effects of the flexural and shear specimens are similar, compared to those of the FRP sheet.

  • PDF

Evaluation of Strengthening Capacity of Axial Member Using Admixture-Modified Mortar (혼화재 첨가 모르터를 이용한 압축부재의 보강성능 평가)

  • 박준명;양동석;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.417-422
    • /
    • 2002
  • Strength and Durability of reinforced concrete exposed at deteriorated environment are decreased by cover spatting and corrosion of reinforcement. The purpose of this paper is to evaluate capacity of strengthening axial member using admixture-modified mortar. To investigate the capacity of strengthened axial member, behavior and strength of strengthening specimens were compared with a monolithic basic specimen. Admixture-modified mortar was prepared with silica fume, zeolite, polymer as cement modifier. From the result of this experiment, strengthening specimens using polymer-modified mortar have apparrent strengthening capacity because of good flexural strength and tensile strength.

  • PDF

An Experimental Study on the Strengthening Effect of RC Beam subjected to Repeated Loading during CFS Strengthening Process (탄소섬유 보강 중에 반복하중을 받은 RC보의 보강효과에 관한 실험적 연구)

  • Jang, Hee-Suk;Kim, Hee-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.183-189
    • /
    • 2006
  • When RC structures are repaired or strengthened using FRP, it is required to cure for some Period under certain air temperature and then it is hopeful to avoid detrimental action caused by external vibration sources during that period. Therefore, an effect of repeated loading during Carbon Fiber Sheet(CFS) strengthening Process on the strengthening efficiency is studied through an experiment for a number of RC beams. Experimental results showed that the curing time of 24 hours without any repeated loading after CFS attachment were recommended for 1 ply strengthening, and 12 hours for 2 plies strengthening.

Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향)

  • 신성우;반병렬;안종문;조인철;김영수;조삼재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.579-584
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows. The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFA is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

Effect of Balance Ability of Knee Osteoarthritis with Lower Extremity Strengthening Exercise (퇴행성 슬관절염 환자의 하지 근력 강화운동이 균형능력에 미치는 영향)

  • Jang, Won-Sug;Bae, Sung-Soo;Jung, Yeon-Woo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.2 no.1
    • /
    • pp.31-39
    • /
    • 2007
  • Purpose : The main purpose of this study was to investigate the influence of lower extremity strengthening on balance ability of knee osteoarthritis. Methods : The walking exercise group with modality treatment and strengthening exercise group with modality treatment. The walking exercise and strengthening for 40 minutes per day and three times a week during 6 weeks period. Short Form McGill Pain Questionnaire(SFMPQ) was used to measure patient's pain level. Patient Specific Functional Scale(PSFS) was used to measure patient's functional disability level. BPM was used to measure sway area. Global Perceived Effect Scale(GPES) was used to measure recovery or worse of patient's condition. Results : 1. SFMPQ was strengthening exercise group showed significantly decreased more than walking exercise group(p<.05). 2. PSFS was strengthening exercise group showed significantly increased more than walking exercise group(p<.05). 3. Sway area was strengthening exercise group showed significantly limited area more than walking exercise group(p<.05). 4. GPES was strengthening exercise group showed significantly increased more than walking exercise group(p<.05). Conclusion : This study will be used as exercise method of patient with osteoarhtritis.

  • PDF

The Effects of Ankle Strengthening Training and Whole Body Vibration on the Balance of Older Adults Who Have Experienced a Fall

  • Choi, Jung Hyun;An, Ho Jung
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.2
    • /
    • pp.884-890
    • /
    • 2015
  • This study observed the effects of ankle strengthening exercise and whole body vibration on the balance ability of older adults, thereby intending to provide basic materials for intervention methods aimed at improving older adults' balance ability. The subjects were 20 older adults who had experienced a fall. They were equally divided into two groups. Ankle strengthening training was applied to one group and ankle strengthening training and whole body vibration were applied to the other group, a timed up and go (TUG) test and Tinetti performance oriented mobility assessment (POMA) were performed, and changes in the subjects' limits of stability were observed. The TUG and POMA results significantly differed between before and after the experiment in the angle strengthening training (AST) group and the angle strengthening training with whole body vibration (ASTWV) group. In addition, the interaction between timing and each group was statistically significant. The limits of stability significantly changed after the intervention in both groups. Differences in the posterior and right limits of stability were significant between the AST group and ASTWV group. Therefore, ankle strengthening exercise and whole body vibration improve older adults' balance maintenance and reduce falls or the risk factors for falls in older adults.

The Effects of Respiratory Muscle Strengthening Exercise on the Respiratory and Phonation Capacity in Spastic Cerebral Palsy Child (호흡근 강화운동이 경직형 뇌성마비 아동의 호흡능력 및 발성에 미치는 영향)

  • Ju, Jeong-Youl;Shin, Hyung-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.285-292
    • /
    • 2010
  • The purpose of this study was to evaluate the influence of respiratory capacity(forced vital capacity), EMG of rectus abdominal muscle, phonation by respiratory muscle strengthening exercise in children with spasticity cerebral palsy. 24 children with spasticity cerebral palsy was randomized in 2 groups, respiratory muscle strengthening exercise and contro group. In the exprimentral groups, respiratory muscle strengthening exercise for 30minutes duration 3 time per week for 8weeks were respectively preformed, Control group was not performed. Before and after experiments, respiratory capacity(forced vital capacity), EMG of rectus abdominal muscle and phonation was measured in all children. In comparison of difference before and after experiment, the respiratory capacity(forced vital capacity) of respiratory muscle strengthening exercise group was significantly increased than the control group(P<.05), rectus abdominal muscle EMG of the respiratory muscle strengthening exercise group was significantly increased more than the control group(P<.05) and MPT of the respiratory muscle strengthening exercise group was significantly increased more than the control group(P<.05). We found that the respiratory muscle strengthening exercise is useful to improve the respiratory capacity and phonation in children with spasticity cerebral palsy.

Evaluation of seismic strengthening techniques for non-ductile soft-story RC frame

  • Karki, Prajwol;Oinam, Romanbabu M.;Sahoo, Dipti Ranjan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.423-435
    • /
    • 2020
  • Open ground story (OGS) reinforced concrete (RC) buildings are vulnerable to the complete collapse or severe damages under seismic actions. This study investigates the effectiveness of four different strengthening techniques representing the local and global modifications to improve the seismic performance of a non-ductile RC OGS frame. Steel caging and concrete jacketing methods of column strengthening are considered as the local modification techniques, whereas steel bracing and RC shear wall systems are selected as the global strengthening techniques in this study. Performance-based plastic design (PBPD) approach relying on energy-balance concept has been adopted to determine the required design force demand on the strengthening elements. Nonlinear static and dynamic analyses are carried out on the numerical models of study frames to assess the effectiveness of selected strengthening techniques in improving the seismic performance of OGS frame.. Strengthening techniques based on steel braces and RC shear wall significantly reduced the peak interstory drift response of the OGS frame. However, the peak floor acceleration of these strengthened frames is amplified by more than 2.5 times as compared to that of unstrengthened frame. Steel caging technique of column strengthening resulted in a reasonable reduction in the peak interstory drift response without substantial amplification in peak floor acceleration of the OSG frame.