• Title/Summary/Keyword: strength safety

Search Result 2,726, Processing Time 0.026 seconds

Improvable Characteristics of Clay Layers with Time Lapse (시간경과에 따른 점토 지반의 개량 특성)

  • 이준대
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • Constructions on the soft clay layer of low strength and high compression bring out many problems. Recent studies show that strength of the soft clay layer could be substantially improved by mixing quicklime. For the purpose, a series of uniaxial compression tests were performed, using quicklime, in order to analyze strength characteristics. The major test results are summarized following : When water content is 90%, the strength is observed to precipitously increase between 3~14 days, then, the extent slowly increase in relative terms. When water content is 130%, the strength is observed to precipitously increase up to 28 days. When the strength of water content 90% is compared to that of water content 130%, the initial strength of the former is higher than that of the latter. The analyses show that the improvement of soft clay layers can be realized by the mixture of both quicklime and sand, and by the mixture of quicklime only.

  • PDF

An Experimental Study on Internal Force By Using Fiber Rope Concrete Beam (섬유로프 인장 배치 시 콘크리트 보의 내력에 관한 실험적 연구)

  • Choi, Jae-Nam;Jin, Sung-Il;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.78-83
    • /
    • 2012
  • This is a study to confirm how to improve and substitute the existing re-bar with other material such as a fiber rope, especially super fiber rope having much more strong tensile strength. 6(b) different fiber rope reinforced beam with a section of $20{\times}30cm$ have been made and tasted as variables designed in the study. The larger diameter of fiber rope, the more capacity of the beam, even though fiber reinforced beam are increased with ten(10)percent, each. Lower capacity of fiber-reinforced beam than normal RC beam has been analyzed theoretically and empirically, based on a lot of experiences of the same size beam test. Fiber rope-reinforced concrete beam does not have sufficient capacity than RC beam due to insufficient bonding capacity of fiber rope in concrete. It leads to decrease beam bearing capacity and crack around lower center of the beam. Therefore, bonding reinforcement of fiber rope beam such as pinning a triangles steel pin in each knot of fiber rope contributes to improving bearing capacity of fiber rope reinforcing beam.

Numerical Study on the Strength Safety of a Fuse Cock Valve (퓨즈콕 밸브의 강도안전성에 관한 수치적 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.1-6
    • /
    • 2015
  • In this paper, the strength safety of a fuse cock main body has been analyzed by the finite element method. The stress and displacement behaviour characteristics have been investigated for thickness variations at the region of (T) between a ball valve and a fuse cock safety connector. The FEM analyzed results recommend that the optimized thickness at the region of (T) is from 1.55mm to 1.6mm for the supplied gas pressure of 1.5~3.5MPa. This is considered for the optimized strength safety and light weight of a fuse cock main body.

The Assessment of the Risk Index of Live-line Works on Distribution Line by the Accident Analysis (재해분석을 통한 배전선로 활선작업 공종별 위험지수 평가)

  • Choi, Seung-Dong;Hyun, So-Young;Han, Hyeong-Ju;Shin, Woon-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.8-14
    • /
    • 2011
  • The live-line works are very dangerous because of direct contacts with the distribution line or neighboring contacts. So the purpose of this study is to identify the risk factor by accident occurrence form and accident case analysis, and to suggest the quantified risk index by risk occurrence frequency and risk strength analysis. And the risk index assessment is researched by accident cases analysis on work type. Accident cases of transmission distribution line are researched based on data of the Ministry of Employment and Labor in the last ten-year period (2000~2009). In results of this paper, high risk isn't always a priority of safety measures. Risk occurrence frequency and risk strength have to be considered according to detail work types, work methods and conditions of field work. And safety management measures must be planned according to risk occurrence frequency and risk strength.

A Study on Improvement of Strength Safety Factor for K55A1 APU Engine Mounts (자주포 보조동력장치 엔진 마운트 강도안전율 향상에 관한 연구)

  • Kim, Byung Hyun;Seo, Jae Hyun;Park, Young Il;Kim, Yong Wook;Kim, Byung Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.281-287
    • /
    • 2016
  • The purpose of this study is to analyze the vibration characteristics and develop a mounting which can improve the strength safety factor to replace the high failure rate APU(auxiliary power unit) imported metal mounts with rubber mount that can be domestically produced. For this study, we analyzed in 3 kinds of rubber mounts hardness for the natural frequency to avoid the average excited frequency of the APU. In addition, allowed vibration acceleration of rubber mount confirmed to 90.8 g by adding a strength safety factor. To assure the validity of the design, we measure the vibration acceleration equipped with a metal mount and rubber mount 2 species(Hs 50 and 60). As a result, the proposed design method in this study is reasonable because the rubber mounts is excellent strength safety factor and vibration transmissibility than metal mounts.

A Study on the Strength Change of Used Pipe Support(II) (재사용 파이프서포트의 내력변화 연구(II))

  • Paik, Shin-Won;Ro, Min-Lae
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.120-125
    • /
    • 2005
  • Formwork is a temporary structure that supports its weight and that of freshly placed concrete as well as construction live loads. Among the accidents and failures that occur during concrete construction, many are formwork failures which usually happen at the time concrete is being placed. In constructions site, pipe supports are usually used as shores which are consisted of the slab formwork. The strength of a pipe support is decreasing as it is frequently being used at the construction site. The objective of this study is to find out the strength change of used pipe support and unused pipe supports according to aging. In this study, 2857 pipe supports were prepared. Among these pipe supports, 2337 pipe supports were lent to the construction companies fire of charge. 520 pipe supports were kept on the outside. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports as well as used pipe supports was decreasing according to age, use frequency and load carrier, and the strength of used pipe supports was lower than the strength of unused pipe supports at the same age. So, the strength of used pipe supports from 191 days to present day was not satisfied the specification of KS F 8001. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the present study results will be able to provide a firm base to prevent formwork collapses.

Sleep Quality and Attention May Correlate With Hand Grip Strength: FARM Study

  • Lee, Gyuhyun;Baek, Sora;Park, Hee-won;Kang, Eun Kyoung
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.822-832
    • /
    • 2018
  • Objective To determine the socio-demographic, psychologic, hematologic, or other relevant factors associated with hand grip strength in Korean farmers. Methods A total of 528 healthy Korean farmers were enrolled. Hand grip strength was measured in both hands using a hydraulic dynamometer. Socio-demographic characteristics were assessed and anthropometric measurements were obtained. Psycho-cognitive measurements such as sleep quality (Pittsburgh Sleep Quality Index) and Go/No-Go test response time were conducted. In addition to physical measurements, serologic parameters including insulin-like growth factor 1 were measured. The factors associated with hand grip strength were analyzed using multiple linear regression analysis after adjusting for age, height, and weight. Results The mean hand grip strength was associated with the Pittsburgh Sleep Quality Index total score (${\beta}=-0.12$, p=0.01), the Go/No-Go test response time (${\beta}=-0.18$, p=0.001), vitamin D (${\beta}=0.12$, p=0.02), and insulin-like growth factor 1 levels (${\beta}=0.1$, p=0.045). In female farmers, hand grip strength was only associated with the Pittsburgh Sleep Quality Index total score (${\beta}=-0.32$, p<0.001). Conclusion The results of this study demonstrate that hand grip strength was associated with sleep quality and attention in Korean farmers.

Fundamental Study on a New Evaluation Method of The Safety Prefabricated Scaffolds

  • Takahashi, Hiroki;Ohdo, Katsutoshi;Takanashi, Seiji
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • When a new member of a scaffold is developed, it is necessary to follow the standard. Therefore, all scaffolds will assume the same structure. The aim of this study was to establish a new method for evaluating scaffold performance. In the present study, a buckling analysis of prefabricated scaffolds was executed, using the shear rigidity of the vertical and the horizontal frames as parameters. From the results, an equation is proposed for evaluating the strength of prefabricated scaffolds.

Reliability Analysis of Ship′s Longitrdinal Strength for the Rational Ship Structural Design (선박구조설계 합리화를 위한 선체 종강도의 신뢰성 해석)

  • Oi-H. Kim;Byung-J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • The application of the reliability analysis is investigated as a probabilistic approach to the assessment of ship's structural strength and to the establishment of design format for longitudinal strength. Reliability analyses are carried out for 34 ships of tankers and bulk carriers built in HHI for some failure modes such as tensile yielding, compressive buckling and ultimate strength of hull girder. The safety assessment of each ship, the calculation of sensitivity factors and the derivation of target reliability index are performed. As results. the difference of reliability indices among ships is great for all modes. To provide more uniform levels of safety the establishment of new strength criteria using partial safety factors is performed. The partial safety factors for the design format are obtained according to the AFOSM method and the reliability-conditioned(RC) method. Finally, a design format using partial safety factors has been proposed. We could find out that new strength criteria can produce consistent reliability indices which are close to the target value.

  • PDF

A Study on Change of Safety Factor according to Slope Analysis Method using Strength Parameters and Slope Change (강도 정수와 경사도 변화를 활용한 비탈면 해석기법에 따른 안전율 변화에 관한 연구)

  • Moon, Hyojong;Shim, Jeonghoon;Jeong, Jisu;Lee, Seungho
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The slope stability analysis by the limit equilibrium method has the disadvantage that it can be applied only when the analysis is performed by setting the critical plane after analyzing the active surface many times and the soil is uniform and only the safety factor can be calculated. However, the analysis using the strength reduction analysis method has advantages that the engineer can judge various aspects and calculate the safety factor. In this study, the safety factor according to the change of slope and shear strength was compared and analyzed using limit equilibrium analysis and strength reduction method. It is suggested that it is desirable to use the strength reduction method which can synthetically review the stress, displacement, and strain in the soil.