• Title/Summary/Keyword: strength reduction factors

Search Result 231, Processing Time 0.027 seconds

Clad강의 debonding 현상에 대한 연구 2

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.22-27
    • /
    • 1987
  • The debonding of clad steel was often occurred at interface between stainless steel and carbon steel during the fabrication of pressure vessel. In order to clarify the causes of debonding phenomena, the fabrication sequences were fully analyzed. As a result, possible factors were noticed for causing the debonding of clad steel, that is, thermal treatment on weldment and welding. Moreover the existence of hydrogen diffused from surroundings also expedites the debonding of clad steel. In this stud, the effect of welding thermal cycle, hydrogen and mixed condition under thermal treatment on the interfacial strength of clad steel were investigated to understand the debonding mechanism of clad steel. From this study, it has been confirmed that the interfacial strength of clad steel was remarkablely deteriorated due to welding and/or existence of hydrogen under thermal treatment. In the case of welding thermal cycle effect, the higher temperature at interface experienced by welding, the more reduction in interfacial strength of clad steel resulted in. And the existence of diffusible hydrogen also reduced the interfacial strength. It is also found that the interfacial strength of clad steel became much lower value than that of the as-received plate under coexistence of above mentioned factors.

  • PDF

Effect of Functional Rehabilitation Exercise for Correct Posture on Physical Balance and Physical Factors

  • Soo Yong PARK;Jin Wook JUNG;Mun Young HEO;Seung Jin HAN
    • Journal of Sport and Applied Science
    • /
    • v.7 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Purpose: This study attempted to investigate the effect of functional rehabilitation exercise for posture correction on physical strength factors and physical balance. Research design, data, and methodology: It consisted of 40 experimental groups that applied functional rehabilitation exercises to 80 people with posture imbalance and 40 comparative groups that performed general exercises, and was conducted four times a week, once for 40 minutes, and for 12 weeks. Results: D.S. (p<.o1) among F.M.S., a moving assessment. It increased significantly from the dictionary, and H.S. (p<.o5). I.L(p<.o5). S.M(p<.o5). A.S.L.R(p<.o5). T.S.P(p<.o01). It was confirmed that R.S. (p<.o5) decreased more after than before. In other words, Functional rehabilitation exercise was effective in improving physical balance. PAPS flexibility (bending forward) (p<.o1). Muscle strength (grip strength test) (p<.o1). Quickness (long jump) (p<.o1). Functional rehabilitation exercise was found to be effective in muscle strength, agility, and flexibility, but not in cardiopulmonary endurance. Pain: Based on the NRS scale (1-10 points). The experimental that there was a significant interaction between the groups.(F=38.583, P=.000). In the comparative group, there was no significant difference in the pre-post, and it was found that the pain level in the experimental group decreased after the pre-post (p<.001). Conclusion: As a result of the above study, it was confirmed that functional rehabilitation exercise improves physical strength factors and physical balance ability, and also affects physical pain reduction due to physical imbalance.

Stability Analysis and Application Evaluation of the Pretensioned Soil Nailing Systems (프리텐션 쏘일네일링 시스템의 안정해석 및 적용성 평가)

  • Kim, Hong-Taek;Park, Si-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.783-790
    • /
    • 2004
  • In this study, a newly modified soil nailing technology named as the PSN(pretensioned soil nailing) system, is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the PSN system. Also proposed arc techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors arc analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and $FLAC^{2D}$ program analysis. And a numerical approach is further made to determine a postulated failure surface as well as a minimum safety factor of the proposed PSN system using the shear strength reduction technique with the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system arc analyzed throughout comparisons with the results expected in case of the general soil nailing system. The efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

Improvement of Multiply Board Properties with Starch Spraying (전분 분무기술을 통한 다층지의 물성개선)

  • Lee, Hak-Lae;Ryu, Jeong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.3
    • /
    • pp.12-23
    • /
    • 2007
  • Frequently spraying of natural starch slurry onto the formed wet web has been adopted to improve properties of paperboards. This conventional starch spraying technique, however, becomes less effective in strength improvement. In this study the effects of various factors including wet web dryness, quantity of starch slurry sprayed, and drying temperature on paperboard properties were investigated. Migration of starch granules into the webs appeared to cause a reduction in plybond strength when the web dryness was lower than this level. Wet webs should contain enough water to swell the starch granules, and at the same time they should be heated to a temperature high enough for complete cooking of the sprayed starches to occur. This suggested that preheating of the wet web can be employed to improve the plybond strength.

Experimental Study on Long-Term Performance Evaluation of Geosynthetic Strip Reinforcement (띠형 섬유보강재의 장기성능 평가를 위한 실험적 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyeung;Cho, Sam-Deok;Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2010
  • In this study, the long-term performance tests, which have extensibility, creep deformation, installation resistance and durability characteristic, is conducted to apply geosynthetic strip in field. The strength reduction factors using the test results are evaluated in order to calculate long-term design tensile strength. First, the creep deformation was evaluated by both the stepped isothermal method(SIM) and the time-temperature superposition(TTS) method. The creep reduction factor is reasonable to apply 1.6. Second, the result of installation damage test had little damage of yarn, which affected strength of reinforcement. Therefore, it can be analyzed that the installation damage of geosynthetic strip has little effect of long-term design tensile strength. Finally, the durability reduction factor considering chemical, biological and outdoor exposure resistance is reasonable to apply 1.1, which is considered the stability and economic efficiency of reinforced earth wall using geosynthetic strip.

  • PDF

Tensile Behavior of Stud Bolt Connections (스터드 볼트 접합부의 인장 거동에 관한 연구)

  • 이태석;김승훈;서수연;이리형;홍원기
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.321-328
    • /
    • 2001
  • This paper presents the tensile behavior of stud connections installed between reinforced concrete and steel members. Eight specimens are tested to verify the factors influencing the tensile behavior of the connection. Major variables considered in the test are the reinforcement ratios of concrete member and connection details. Test results indicate that the reinforcing bars near stud bolts contribute to the increase of the tensile strength of the member as well as to the reduction of brittle failure. It is shown that C-type or U-type connection has relatively high ductility. From the evaluation on the tensile strength of test results including those of peformed by previous researchers, it was shown CCD (Concrete Capacity Design) method overestimated the strength. In this paper, the reduction factor of 0.75 ø instead of ø is suggested for design purpose of the stud connection.

Evaluation of Installation Damage Factor for Geogrid using Maximum Particle Size of Backfill Material (뒤채움 최대입도를 이용한 지오그리드 보강재의 시공손상계수 산정 방법)

  • Kim, Kyung-Suk;Choi, Young-Chul;Kim, Tae-Soo;Lim, Seoung-Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • Reduction Factor for Installation Damage required for calculation of design strength of geogrid used in MSEW(mechanically stabilized earth wall) design is usually obtained in the field test simulating real construction condition. However, damages occurred in geogrid during backfill work are influenced by many factors such as polymer types, unit weight per area, backfill construction method and gradation of backfill material and field test considering these factors demands lots of time and costs. In this study, factors affecting installation damage are analyzed and empirical method for evaluating reduction factor for installation damage using maximum particle size in backfill material is suggested.

  • PDF

Interpretation of Limit Creep Strain of Geogrids by Sherby-Dorm Plots (Sherby-Dorm Plots에 의한 지오그리드의 한계크리프변형률 해석)

  • Jeon, Han-Yong;Mok, Mun-Sung;Jin, Yong-Bum;Lim, Ji-Hye
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1572-1579
    • /
    • 2005
  • New procedure for evaluation of creep reduction factor using performance limit strain concept was introduced and confirmed through the creep test results. To determine the performance limit strain of the textile geogrid used in this study, the Sherby-Dorm Plots were applied and the results were compared with the results that applied existed limit strain criteria (GRI test method GG-4). The limit creep strain of the geogrid samples that determined by using the Sherby-Dorm Plots were all 11%. This value is more higher than the existed criteria as 10%. From this 11% limit strain the creep reduction factors were calculated at 100,000 hours design. It was resulted in 1.45 for all of the geogrid samples(8t/m, 10t/m). Finally, when it was compared with the creep reduction factors that using 10% criteria, there were some decrease of reduction factor values about $0.06{\sim}0.14$.

  • PDF

Evaluation of Creep Reduction Factor for Geosynthetic Strip Reinforcement with Folding Grooves (접힘홈이 형성된 띠형 섬유보강재의 크리프 감소계수 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.213-224
    • /
    • 2018
  • In this study, a series of accelerated creep tests (SIM) was carried out on geosynthetic strip reinforcements with folding grooves having different tensile strengths (15 kN, 25 kN, 35 kN, 50 kN, 70 kN, and 90 kN) to analyze creep characteristics and to assess creep reduction factors. In particular, long-term creep tests were conducted on geosynthetic strip reinforcements with 25 kN tensile strength, which is widely used, to compare and analyze the accelerated creep test results. As a result, the creep reduction factor increased with an increasing design life of reinforcement. In addition, geosynthetic strip reinforcement using the same material and manufacturing method showed similar creep reduction factors at the same design life for different tensile strengths. When both long-term and accelerated creep test data were used, the creep reduction factors from the accelerated test were estimated to be 5.9%~7.1% less than those from the long-term creep test for the design life ranging from 50 to 100 years.