• Title/Summary/Keyword: strength ratios

검색결과 1,624건 처리시간 0.033초

Fundamental Properties High-Strength Antiwashout Underwater Concrete (고강도 수중불분리성콘크리트의 기초물성에 대한 연구)

  • Moon, Han-Young;Kim, Seong-Soo;Song, Yong-Kyu;Jeon, Joong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.195-198
    • /
    • 2000
  • Recently, the anriwashout underwater concrete has been increasingly used for underwater structures such as vary high diaphrame walls of high strength massive concrete structures. In this study, experiments were made on the fundamental properties of antiwashout underwater concrete replaced with Fly Ash from 10% to 30% to improve its properties. Resultant to the test, we got the results as follows; the value of slump flow wasi ncreased, the setting, time was very delayed, and the heat evolution amount decreased, whereas the amount of suspended solids became high, and pH value became low as to increasing the replacement ratio of Fly Ash. Also the ratios of compressive strength (in water compared to in air) at 28day were obtained over 90%, and these values were satisfied with 70% of a criterion.

  • PDF

A Fundamental Study on the Properties of Permeable Polymer Concrete (투수성 폴리머 콘크리트의 성질에 관한 기초적 연구)

  • 박응모;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.363-368
    • /
    • 1997
  • In this study, permeable polymer concretes using unsaturated polyester (UP) resin with binder contents of 6, 7 and 8%, filler-binder ratios of 0, 0.5, 1.0%, and various sand and aggregate contents are prepared, and tested for compressive and flexural strengths, length change and water permeability. The effects of the mix proportioning factors on the strength properties, length change and coefficient of permeability of the permeable polymer concrete are discussed. From the test results, increase in the compressive strength and decrease in the coefficient of permeability of permeable polymer concrete are clearly observed with increasing filler-binder ratio. The permeable polymer concretes having a compressive strength of 9.4~28.3MPa and a coefficient of permeability of 0.12~1.93 cm/s can be produced in the consideration of the mix proportioning factors.

  • PDF

Evaluation of Physical Properties of Polyurethane Resin for Wound Covering according to PTMG, DMBA Application (PTMG, DMBA 적용에 따른 창상피복 폴리우레탄 수지의 물리적 특성 평가)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • 제37권5호
    • /
    • pp.1248-1256
    • /
    • 2020
  • In this study, the polyurethane resin was synthesized by applying PTMG and DMBA of different composition ratios for the synthesis of water-dispersible polyurethane used in wound coating resin. The varying properties of the synthesized water-dispersible polyurethane were measured through tensile strength, elongation, and abrasion resistance analysis. As for the tensile strength measurement result according to the PTMG content, the sample with the highest reaction molar ratio was measured as 1.08 kgf/mm2 and the elongation was measured as 520%. As for the tensile strength result according to the DMBA content, the sample with the highest reaction molar ratio was measured as 0.51 kgf/mm2, and the elongation was measured as 435%. The degree of surface destruction by the abrasion resistance measurement was visually confirmed through SEM.

Development of Non-Sintered Ceramic Containing Basalt Powder (현무암 석분을 혼입한 비소성 세라믹의 개발)

  • Kim, Gui-Shik;Kim, Jung-Yun;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • 제18권3호
    • /
    • pp.93-99
    • /
    • 2014
  • The purpose of this paper is to manufacture the non-sintered ceramic used lime and industrial waste. The used materials were basalt powder sludge, calcium hydroxide(Ca(OH)2) and additives such as calcium stearate and $TiO_2$. The mixing ratios between Ca(OH)2 and sludge were 5:5, 6:4 and 8:2, respectively. The ceramic forms were pressured by 100, 200 and 300 bar and cured in 14% CO2 for 12 days. The behaviors of compressive strength, specific gravity, water absorption and pH of ceramic form were investigated. The results were compressive strength of over 36 MPa, water absorption of over 8.8%, pH value of over 12.3. And these results satisfied GR F 4006 and 4031 standard.

Physical and Mechanical Properties of Porous Concrete Using Waste Activated Carbon (폐활성탄을 사용한 다공성 콘크리트의 물리.역학적 성질)

  • Youn, Joon-No;Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제51권4호
    • /
    • pp.21-27
    • /
    • 2009
  • This study was performed to evaluate the physical and mechanical properties of porous concrete using waste activated carbon. Material used were ordinary portland cement, recycled coarse aggregate, waste activated carbon and superplasticizer. The replacement ratios of waste activated carbon were 0,1,2,3,4,5,6,7,8,9, and 10 %. The void ratio was decreased and ultrasonic pulse velocity was increased with increasing the waste activated carbon powder, respectively. The compressive strength and flexural strength of porous concrete using waste activated carbon powder were in the range of 8.21${\sim1}$6.58 MPa and 1.69${\sim1}$3.68 MPa, respectively. The pH degree of porous concrete in 1day and 77days were shown in 12.50${\sim1}$12.63 and 10.21${\sim1}$10.70, respectively. Accordingly, waste activated carbon can be used for porous concrete material.

Optimum Mix Proportion and Mechanical Properties of Rain Garden Structure Concrete using Recycled Coarse Aggregate, Hwang-Toh, Blast Furnace Slag and Jute Fiber (순환굵은골재, 황토, 고로슬래그 미분말 및 마섬유를 사용한 레인가든 구조물 콘크리트의 최적배합설계 및 역학적 특성)

  • Kim, Dong-Hyun;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제55권3호
    • /
    • pp.25-33
    • /
    • 2013
  • In this study, the optimum mix proportions of rain garden structure concrete were decided and the mechanical properties were evaluated. Experimental parameters were blast furnace slag, hwang-toh, recycled aggregates and natural jute fibers. The target compressive strength and chloride ion penetration were more than 24 MPa and less than 1000 coulombs, respectively. The response surface method was used for statistical optimization of experimental results. The optimal mixing ratios of the blast furnace slag, hwang-toh, recycled coarse aggregate and jute fiber volume fraction were determined 59.98 %, 8.74 %, 12.12 % and 0.2 %, respectively. The compressive strength, flexural strength and chloride ion penetration test results of optimum mix ratio showed that the 24.56 MPa, 3.88 MPa and 999.08 columbs, respectively.

Basic Mix Proportions of Antiwashout Underwater Polymer Cement Mortar as a Repair Material (보수재료로서 수중불분리 폴리머 시멘트 모르타르의 기초적 배합)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.193-194
    • /
    • 2019
  • The purpose of this study is to design the basic mix proportions of antiwashout underwater polymer cement mortar as a repair material. The antiwashout underwater polymer cement mortars are prepared with various mix proportions using three type polymer dispersions without or with antifoamer. From the test results, the whole antiwashout underwater polymer cement mortars can be cast underwater without segregation like plain mortar. It is apparent that the flexural strength of antiwashout underwater SBR cement mortars with antifoamer at polymer- cement ratios of 5% and 10% is higher than that of plain mortar irregardless of a little low compressive strength.

  • PDF

The effect of soil-structure interaction on inelastic displacement ratio of structures

  • Eser, Muberra;Aydemir, Cem
    • Structural Engineering and Mechanics
    • /
    • 제39권5호
    • /
    • pp.683-701
    • /
    • 2011
  • In this study, inelastic displacement ratios and ductility demands are investigated for SDOF systems with period range of 0.1-3.0 s. with elastoplastic behavior considering soil structure interaction. Earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used in analyses. Soil structure interacting systems are modeled with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for inelastic displacement ratio of interacting system ($\tilde{C}_R$) as a function of structural period of interacting system ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}/T$). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Deflection prediction for reinforced concrete deep beams

  • Lu, Wen-Yao;Hwang, Shyh-Jiann;Lin, Ing-Jaung
    • Computers and Concrete
    • /
    • 제7권1호
    • /
    • pp.1-16
    • /
    • 2010
  • A simplified method, developed from the softened strut-and-tie model, for determining the mid-span deflection of deep beams at ultimate state is proposed. The mid-span deflection and shear strength predictions of the proposed model are compared with the experimental data collected from 70 simply supported reinforced concrete deep beams, loaded with concentrated loads located at a distance a from an end reaction. The comparison shows that the proposed model can accurately predict the mid-span deflection and shear strength of deep beams with different shear span-to-depth ratios, different concrete strengths, and different horizontal and vertical hoops.

A Study on Mechanical Properties of Concrete at Elevated Temperatures (고온에서의 콘크리트 재료 역학적 특성에 관한 연구)

  • Park, Chan-Kyu;Kim, Gyu-Yong;Lee, Seung-Hoon;Park, Ju-Heon;Kim, Young-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.769-772
    • /
    • 2006
  • The effects of high temperature on strength, elastic modulus and strain at peak stress of concrete were experimentally investigated. The type of test was the stressed test that a preload was applied to the specimen prior to heating and the load was sustained during the heating period. In this study, the level of preload was 25% of compressive strength at room temperature. All tests were conducted at various temperatures(20,100, 200, 300, 400, 500, 600 and $700^{\circ}C$) for concretes made with W/B ratios 46% and 32%. Test results showed that on the whole, the relative values of strength and elastic modulus, and the real strain value at peak stress were not influenced by the W/B ratio.

  • PDF