Journal of Korean Society of Environmental Engineers
/
v.33
no.11
/
pp.783-789
/
2011
Recently, auto-thermal thermophilic aerobic digestion (ATAD) has a great attention for destruction of wasted sludge biomass in wastewater treatment plant. Reduction of sludge concentration has been successfully achieved with pilot scale ATAD and ceramic filtration process in field condition. However, high concentration of COD, total nitrogen (TN) and total phosphorus (TP) was observed in filtrate, which should be treated before recirculation of filtrate to biological wastewater treatment plant. This study was focused on removal of nitrogen and phosphorus contained in the filtrate of ATAD, using struvite crystallization method. The effect of operational and environmental parameters (such as, N, P and Mg ion concentration and molar ratio, pH, reaction time, agitation strength, seed dosage, and reaction temperature) on the treatment of TN and TP with struvite crystallization were evaluated. Magnesium (as $MgCl_26H_2O$) and phosphorus (as $K_2HPO_4$) ions were, if necessary, added to increase nitrogen removal efficiency by the crystal formation. Average concentration of $NH_4^+-N$ and $PO_4^{3-}-P$ of the filtrate were 1716.5 mg/L and 325.5 mg/L, respectively. Relationship between removal efficiencies of nitrogen and phosphorus and molar ratios of $Mg^{2+}$ and $PO_4^{3-}-P$ to $NH_4^+-N$ was examined. Crystal formation and nitrogen removal efficiencies were significantly increased as increasing molar ratios of magnesium and phosphorus to nitrogen. As molar ratio of $Mg^{2+}:PO_4^{3-}-P:NH_4^+-N$ were maintained to 2 : 1 : 1 and 2 : 2 : 1, removal efficiencies of nitrogen and phosphorus were 71.6% and 99.9%, and 93.8% and 98.6%, respectively. However, the effect of reaction time, mixing intensity, seed dose and temperature on the struvite crystallization reaction was not significant, comparing to those of molar ratios. Settled sludge volume after struvite crystallization was observed to be reduced with increase of seed dose and to be increased at high temperature.
The present study was carried out to investigate the effect of the partial freezing as a means of keeping freshness of mullet (Mugil cephlus). Living samples were killed and stored by icing, partial freezing at $-3^{\circ}C$ and freezing at $-30^{\circ}C$, respectively, Changes in the freshness of the mullet muscle and the phys cal properties of its meat paste product were examined during storage. The results obtained are summarized as follows: The period that k value reached to $20\%$ during storage was the longest in the frozen storage, followed by the partial frozen storage and the ice storage, which was 4 days in the mullet muscle stored by partial freezing. In the case of VBN content, it was below 20 mg/100g in the mullet muscle stored by icing and partial freezing. The oxidation of lipids in the mullet muscle was greater in the ice storage than in the partial frozen storage. The myofibrillar protein of the mullet muscle was appeared to decrease during storage, which the decreasing ratios during storage for 9 days were below $3\%$ in the frozen storage, $17\%$ in the ice storage and $10\%$ in the partial frozen storage. While, the alkali-soluble protein showed to increase and in non-protein nitrgenous compounds, sarcoplasmic protein and stroma was not a great change during storage. The decrease of gel strength, folding strength and texture of meat paste products prepared under different storage conditions was the greatest in the ice storage, the next in the partial frozen storage and such changes in the frozen storage were not so much. In gel strength of the product prepared with sample fishes stored for 10 days, the gel strength in the ice storage, partial frozen storage and frozen storage was about $30\%,\;60\%\;and\;97\%$ of the control. respectively. The expressible drip of the products increased with storage time of raw fishes, which that of the products prepared with sample fishes stored for 15 days was about 2.1 times in the ics storage, about 1.5 times in the partial frozen storage and about 1.1 times in frozen storage as much as that of the control, respectively.
In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and $K_0-anisotropically$ consolidated gravel-sand mixtures are investigated. for this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gavel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strata behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the $K_0-anisotropically$ consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.
Concentration of nitrogen, one of the major elements, and ratio of two nitrogen forms (NH4+ and NO3-) in the nutrient solution affect the quality and food safety of fresh vegetable produce. This study was conducted to find an appropriate strength and NH4+:NO3- ratio of a nutrient solution for growth and development of a Romaine lettuce (Lactuca sativa L. var. longiflora) 'Caesar Green', a representative leafy vegetable, grown in a home hydroponic system. In the first experiment, plants were grown using three types of nutrient solution: A commercial nutrient solution (Peters) and two strengths (GNU1 and GNU2) of a multipurpose nutrient solution (GNU solution) developed in a Gyeongsang National University lab. Plants grown with the GNU1 and GNU2 had greater shoot length, leaf length and width, and biomass yield than Peters. On the other hand, the root hairs of plants grown with Peters were short and dark in color. Tissue NH4+ content in the Peters was higher than that of the GNU1 and GNU2. The higher contents of NH4+ in this solution may have caused ammonium toxicity. In the second experiment, eight treatment solutions, combining GNU1 and GNU2 solutions with four ratios of NO3- :NH4+ named as 1, 2, 3 and 4 were used. Both experiments showed more growth in the GNU2 group, which had a relatively low ionic strength of the nutrient solution. The growth of Romaine lettuce showed the greatest fresh weight along with low tissue NO3- content in the GNU2-2. This was more advantageous in terms of food safety in that it suppressed the accumulation of surplus NO3- in tissues due to the low ionic trength of the GNU2 subgroup. In addition, this is preferable in that it can reduce the absolute amount of the input of inorganic nutrients to the nutrient solution.
Korean Journal of Construction Engineering and Management
/
v.25
no.5
/
pp.32-40
/
2024
In the construction industry, lack of reliability in the quality of recycled aggregates, harmful substance problems, and negative consumer perceptions limit the expansion of the use of recycled aggregates. In this respect, existing studies mainly focus on the use of recycled coarse aggregates in concrete in consideration of durability. On the other hand, in the case of recycled fine aggregates, not only are there insufficient cases applied to major structures, but the scope of application is very limited due to lack of awareness. Therefore, the main purpose of this study is to present the possibility of their application in bearing and non-bearing wall structures through physical characteristics experiments of concrete bricks for masonry according to various mixing ratios of recycled fine aggregates and cement amounts. To this end, the compressive strength and absorption rate of concrete bricks were measured focusing on the mixing ratio of the recycled fine aggregate and the crushed fine aggregate and the amount of cement. As a result, it is found that it is possible to use 100% of recycled fine aggregate for 200kg/m3 of cement or 25% of crushed fine aggregate mixed with 75% of recycled fine aggregate for the same amount of cement to achieve the compressive strength of 13MPa, witch is one of the quality requirements for concrete bricks for bearing walls. In addition, it is found that to meet the strength of 8MPa, one of the quality requirements for non-bearing walls, it is sufficient to use 100% of the recycled fine aggregate for 100kg/m3 of cement. Through the absorption rate tests, it is also confirmed that the absorption rate of the concrete brick is 13% or less by meeting the required performance criteria. This means that even if recycled fine aggregate is used in the manufacture of concrete bricks, the quality standards required by KS F 4004 (concrete bricks) can be sufficiently met.
Magazine of the Korean Society of Agricultural Engineers
/
v.11
no.1
/
pp.1604-1615
/
1969
This experiment was carried out as one of the basic studies to improve the acid resistance of concrete and it was conducted to investigate some relations among physical properties such as basorption, ratio of water to cement, compressive strength, density and ratio of mix to weight losses of mortar when exposed to 0.1 N solution of hydrochrolic acid. The results obtained from the limited data secured so far in this experiment are summarized as follows: 1. The specimens used in the experiment were made of 5 cubic centimeters of mortar having such various ratios of mix by weight as 1 : 1, 1 : 3, 1 : 5, 1 : 7, 1 : 10. 2. Physical tests included compressive strengths at 7 days, 28 days, 3 months, and 6 month, and 5 hour boiling absorption test. 3. In acid test, every specimen was immersed into 0.1 N solution of hydrochrolic acid. The specimens exposed to the acid solution were weighed to determine the weight losses of the acid-corroded at one week interval for 7 weeks exposure, and the old acid solutions were also changed to fresh one when weighed the weight losses by acid attack at one week interval. 4. The correlative relations were found among physical properties and they are expressed by certain formulas as follows; i) Relation between ratio of mix and absorption Y = 1.036x + 13.53 where Y: absorption(%) X: ratio of mix ii) Relation between ratio of mix and ratio of water-cement Y = 0.204x + 0.214 where Y: ratio of water-cement. X: ratio of mix iii) Relation between ratio of water-cement and absorption Y = 5.01x + 12.53 where Y: absorption(%). X: ratio of water-cement iv) Relation between density and absorption Y = 50.6 - 0.0176X where Y: absorption(%). X: density($kg/m^3$) v) Relation between density and ratio of water cement Y = 7.2183 - 0.0033X where Y: ratio of water-cement . X: density($kg/m^3$) 5. After completing the acid exposure test the specimens were corroded and , the per cent ranges of weight losses varies from a minimum of 20.4 per cent at a 1 : 1 mix to a maximum of 92.0 per cent at a 1:10 mix 6. The correlative relations of physical properties of mortar to weight losses by acid attak were found and they are also expressed by certain formulas as follows: i) Relation between weight losses and ratio of mix Y = 8.59X + 8.63 where Y: weight losses(%), X: ratio of mix ii) Relation between wieght losses and absorption Y = 0.121x + 12.43 where Y: absorption(%). X: weight losses(%) iii) Relation between weight losses and ratio of w/c Y = 0.0226X + 0.07 where Y: ratio of w/c X: weight losses(%) iv) Relation between weight losses and compressive strength LogY = 3.6097 - 0.05058X + 0.00022$X^2$ where Y: compressive strength ($kg/cm^3$) X: weight losses(%) v) Relation between weight losses and density Y = 2153.1 - 6.62X where Y: density($kg/m^3$) X: weigh losses(%) 7. In order to make better acid resistant mortar, it could be concluded that a 1 : 3 mix or richer mixes, adequate mixing water to minnimize the ratio of water-cement considering the workability, 16 per cent or less absorption by 5 hour boiling water, 1,800 kilogram per cubic meter or denser density by absolute weight base and 200 kilogram per square meter or compressive strength at 20 day, etc are required so as to obtain acid-resistant mortar. In addition to the above, it might be recommonded to select the fine aggregate and to use better equipments such as a mechanical vibrator, a mechanical mixer etc. in concrete manufacturing works.
Unagsan and Sogrisan granites are widely distributed in the northern Gyeonggi massif and middle Ogcheon belt, respectively, and they show different petrologic characteristics as follows. The former has compact textures and light grey colors, and the latter has spotted miarolitic textures and pink colors. Most of the samples selected for tests are fresh and coarse-grained. And bored core samples were prepared so that they are vertical to the rift plane. The results of modal analysis show that Unagsan granite has significantly higher quartz and plagioclase contents (Qz+Pl) than Sogrisan granite. In contrast, alkali feldspar content (Af) of Sogrisan granite is much higher than that of Unagsan granite. Therefore, it is believed that the light grey colors of Unagsan granite are due to relatively high Qz+Pl, and the pink colors of Sogrisan granite are caused by higher Af. Fractures in Sogrisan granite have strongly perpendicular strike patterns and more dip values close to vertical compared with the fractures in Unagsan granite. Results of the fracture pattern analysis suggest that the Sogrisan granite has better potential to produce dimension stones than the Unagsan granite. However, miarolitic textures often found in the Sogrisan granite may be one of the factors reducing the granite quality. The Unagsan and Sogrisan granites have similar specific gravity values of 2.60 and 2.57, respectively. Absorption ratios and porosity values of Sogrisan granite are higher than those of Unagsan granite, and they shows linearly positive correlations. Compressive and tensile strengths of the Unagsan granite are generally higher than those of Sogrisan granite. These differences and variation trends found in physical properties of Unagsan and Sogrisan granite can be explained by the differences in the textures of Unagsan and Sogrisan granites, namely compact and miarolitic textures respectively. For Unagsan granite, compressive and tensile strengths are negatively correlated with porosity but for Sogrisan granite no specific correlations are found. This is probably due to the irregular dispersion patterns of miarolitic textures formed during the later stages of magmatic processes. Contrary to the trends found in absorption ratios, both granites have similar values of abrasive hardness, which can be explained by higher Qz+Af of the Sogrisan granite than those of the Unagsan granite and that quartz and alkali feldspar have relatively larger hardness values. For Sogrisan granite, compressive strength shows slightly positive correlations with Qz+Af+Pl and negative correlations with biotite and accessory mineral contents (Bt+Ac).
Journal of the Korean Society of Marine Environment & Safety
/
v.26
no.1
/
pp.103-113
/
2020
Jack-up drilling rigs are widely used in the offshore oil and gas exploration industry. Although originally designed for use in shallow waters, trends in the energy industry have led to a growing demand for their use in deep sea and harsh environmental conditions. To extend the operating range of jack-up units, their design must be based on reliable analysis while eliminating excessive conservatism. In current industrial practice, jack-up drilling rigs are designed using the working(or allowable) stress design (WSD) method. Recently, classifications have been developed for specific regulations based on the load and resistance factor design (LRFD) method, which emphasises the reliability of the methods. This statistical method utilises the concept of limit state design and uses factored loads and resistance factors to account for uncertainly in the loads and computed strength of the leg components in a jack-up drilling rig. The key differences between the LRFD method and the WSD method must be identified to enable appropriate use of the LRFD method for designing jack-up rigs. Therefore, the aim of this study is to compare and quantitatively investigate the differences between actual jack-up lattice leg structures, which are designed by the WSD and LRFD methods, and subject to different environmental load-to-dead-load ratios, thereby delineating the load-to-capacity ratios of rigs designed using theses methods under these different enviromental conditions. The comparative results are significantly advantageous in the leg design of jack-up rigs, and determine that the jack-up rigs designed using the WSD and LRFD methods with UC values differ by approximately 31 % with respect to the API-RP code basis. It can be observed that the LRFD design method is more advantageous to structure optimization compared to the WSD method.
An anionic polyurethane dispersions (PUDs) were synthesized from the poly (tetramethylene glycol) (PTMG, Mw = 2000 g/mol), mixed isocyanate of dicyclohexylmethane-4,4'-diisocyanate $(H_{12}-MDI)$ and 4,4'-diphenylmethane diisocyanate (MDI), and dimethylol propionic acid (DMPA) as anionic site, following a prepolymer mixing process. Triethylamine (TEA) was used as a neutralization agent and the ethylenediamine (EDA) as the chain extender of the prepolymer. The effects of the DMPA molar ratio and aromatic diisocyanate content in the mixed isocyanate on the particle size and viscosity of PUD were studied. Also, the mechanical and thermal properties of the PUD cast films were discussed according to the molar ratio of DMPA and aromatic isocyanate content. It was found that the particle size and the viscosity of an anionic PUD decreased with increasing DMPA molar ratio but increased with increasing aromatic isocyanate (MDI) content in the mixed isocyanate at the constant DMPA content. Tensile strength of the PUD cast films increased and elongation at break decreased with increasing DMPA content at the constant mixed isocyanate molar ratios. In thermal degradation temperature of PUD cast films, the effect of DMPA contents was great but the effect of aromatic isocyanate contents at the low DMPA content was very slight respectively.
Journal of the Korean Society of Hazard Mitigation
/
v.8
no.6
/
pp.53-60
/
2008
The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2007) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to linear moment gradient and resulted in the development of design equations. The ratios of the flange thickness, flange width, and stepped length of beam are considered for the analytical parameters. Two groups of 27 cases and 36 cases, respectively, were analyzed for doubly and singly stepped beams in the inelastic buckling range. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi and Trahair (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic lateral-torsional buckling problem and increase efficiency in building and bridge design.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.