• Title/Summary/Keyword: strength prediction model

Search Result 770, Processing Time 0.023 seconds

Prediction of compressive strength of GGBS based concrete using RVM

  • Prasanna, P.K.;Ramachandra Murthy, A.;Srinivasu, K.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.691-700
    • /
    • 2018
  • Ground granulated blast furnace slag (GGBS) is a by product obtained from iron and steel industries, useful in the design and development of high quality cement paste/mortar and concrete. This paper investigates the applicability of relevance vector machine (RVM) based regression model to predict the compressive strength of various GGBS based concrete mixes. Compressive strength data for various GGBS based concrete mixes has been obtained by considering the effect of water binder ratio and steel fibres. RVM is a machine learning technique which employs Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM is an extension of support vector machine which couples probabilistic classification and regression. RVM is established based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Compressive strength model has been developed by using MATLAB software for training and prediction. About 70% of the data has been used for development of RVM model and 30% of the data is used for validation. The predicted compressive strength for GGBS based concrete mixes is found to be in very good agreement with those of the corresponding experimental observations.

Ultimate shear strength prediction model for unreinforced masonry retrofitted externally with textile reinforced mortar

  • Thomoglou, Athanasia K.;Rousakis, Theodoros C.;Achillopoulou, Dimitra V.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.411-425
    • /
    • 2020
  • Unreinforced masonry (URM) walls present low shear strength and are prone to brittle failure when subjected to inplane seismic overloads. This paper discusses the shear strengthening of URM walls with Textile Reinforced Mortar (TRM) jackets. The available literature is thoroughly reviewed and an extended database is developed including available brick, concrete and stone URM walls retrofitted and subjected to shear tests to assess their strength. Further, the experimental results of the database are compared against the available shear strength design models from ACI 549.4R-13, CNR DT 215 2018, CNR DT 200 R1/2013, Eurocode 6 and Eurocode 8 guidelines as well as Triantafillou and Antonopoulos 2000, Triantafillou 1998, Triantafillou 2016. The performance of the available models is investigated and the prediction average absolute error (AAE) is as high as 40%. A new model is proposed that takes into account the additional contribution of the reinforcing mortar layer of the TRM jacket that is usually neglected. Further, the approach identifies the plethora of different block materials, joint mortars and TRM mortars and grids and introduces rational calibration of their variable contributions on the shear strength. The proposed model provides more accurate shear strength predictions than the existing models for all different types of the URM substrates, with a low AAE equal to 22.95%.

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

An iterative hybrid random-interval structural reliability analysis

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1061-1070
    • /
    • 2014
  • An iterative hybrid structural dynamic reliability prediction model has been developed under multiple-time interval loads with and without consideration of stochastic structural strength degradation. Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent interval load and structural strength are assumed as random variables. For structural reliability problem with random and interval variables, the interval variables can be converted to uniformly distributed random variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using the first order second moment method according to the stress-strength interference theory. Finally, the proposed method is verified by three examples which show that the method is practicable, rational and gives accurate prediction.

Development of Empirical Equation for Prediction of Minimal Track Buckling Strength (곡선부 궤도의 최소좌굴강도 추정식의 개발)

  • Yang, Sin-Chu;Kim, Eun;Lee, Jee-Ha;Shin, Jung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.475-480
    • /
    • 2001
  • In this study, a empirical equation which can be feasibly used to evaluate minimal track buckling strength without exact numerical analysis is presented. Parameter studies we carried out to investigate the effects of the individual factor on buckling strength. In order to simulate track buckling in the field as precisely as possible, a rigorous buckling model which accounts for all the important parameters is adopted. A empirical equation for prediction of minimal track buckling strength is derived by taking nonlinear regression of data which are obtained from numerical analyses. Its characteristics and applicability are investigated by comparing the results by the presented equation with the one by the equation which was presented in japan, and is frequently using in korea when designing track structure.

  • PDF

Reliability Improvement of In-Place Concreter Strength Prediction by Ultrasonic Pulse Velocity Method (초음파 속도법에 의한 현장 콘크리트 강도추정의 신뢰성 향상)

  • 원종필;박성기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.97-105
    • /
    • 2001
  • The ultrasonic pulse velocity test has a strong potential to be developed into a very useful and relatively inexpensive in-place test for assuring the quality of concrete placed in structure. The main problem in realizing this potential is that the relationship between compressive strength ad ultrasonic pulse velocity is uncertain and concrete is an inherently variable material. The objective of this study is to improve the reliability of in-place concrete strength predictions by ultrasonic pulse velocity method. Experimental cement content, s/a rate, and curing condition of concrete. Accuracy of the prediction expressed in empirical formula are examined by multiple regression analysis and linear regression analysis and practical equation for estimation the concrete strength are proposed. Multiple regression model uses water-cement ratio cement content s/a rate, and pulse velocity as dependent variables and the compressive strength as an independent variable. Also linear regression model is used to only pulse velocity as dependent variables. Comparing the results of the analysis the proposed equation expressed highest reliability than other previous proposed equations.

  • PDF

Prediction of compressive strength of concrete using multiple regression model

  • Chore, H.S.;Shelke, N.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.837-851
    • /
    • 2013
  • In construction industry, strength is a primary criterion in selecting a concrete for a particular application. The concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting for 28 days for such a test would serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in large construction sites. Therefore, rapid and reliable prediction of the strength of concrete would be of great significance. On this backdrop, the method is proposed to establish a predictive relationship between properties and proportions of ingredients of concrete, compaction factor, weight of concrete cubes and strength of concrete whereby the strength of concrete can be predicted at early age. Multiple regression analysis was carried out for predicting the compressive strength of concrete containing Portland Pozolana cement using statistical analysis for the concrete data obtained from the experimental work done in this study. The multiple linear regression models yielded fairly good correlation coefficient for the prediction of compressive strength for 7, 28 and 40 days curing. The results indicate that the proposed regression models are effectively capable of evaluating the compressive strength of the concrete containing Portaland Pozolana Cement. The derived formulas are very simple, straightforward and provide an effective analysis tool accessible to practicing engineers.

Case-based reasoning approach to estimating the strength of sustainable concrete

  • Koo, Choongwan;Jin, Ruoyu;Li, Bo;Cha, Seung Hyun;Wanatowski, Dariusz
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.645-654
    • /
    • 2017
  • Continuing from previous studies of sustainable concrete containing environmentally friendly materials and existing modeling approach to predicting concrete properties, this study developed an estimation methodology to predicting the strength of sustainable concrete using an advanced case-based reasoning approach. It was conducted in two steps: (i) establishment of a case database and (ii) development of an advanced case-based reasoning model. Through the experimental studies, a total of 144 observations for concrete compressive strength and tensile strength were established to develop the estimation model. As a result, the prediction accuracy of the A-CBR model (i.e., 95.214% for compressive strength and 92.448% for tensile strength) performed superior to other conventional methodologies (e.g., basic case-based reasoning and artificial neural network models). The developed methodology provides an alternative approach in predicting concrete properties and could be further extended to the future research area in durability of sustainable concrete.

Prediction of the Compressive Strength of High Flowing Concrete by Maturity (적산온도에 의한 고유동콘크리트의 압축강도 예측)

  • 길배수;한장현;김규용;권영진;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.281-286
    • /
    • 1998
  • The aim of this study is to compare the development of compressive strength of high-Flowing concrete with maturity and to investigate the applicability of strength prediction models of concrete. An experiment was attempted on the high-flowing concrete mixes using Ordinary portland cement, High belite cement, Blast furance slage cement and replaced Fly-ash of 30% by weight of Ordinary portland cement, the water-binder ratios of mixes being 0.35 and the curing temperatures being 30, 20, 10, 5$^{\circ}C$. Test results of mixes are statistically analyzed to infer the correlation coefficient between the maturity and the compressive strength of high-flowing concrete.

  • PDF

Comparative analysis of multiple mathematical models for prediction of consistency and compressive strength of ultra-high performance concrete

  • Alireza Habibi;Meysam Mollazadeh;Aryan Bazrafkan;Naida Ademovic
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.539-555
    • /
    • 2023
  • Although some prediction models have successfully developed for ultra-high performance concrete (UHPC), they do not provide insights and explicit relations between all constituents and its consistency, and compressive strength. In the present study, based on the experimental results, several mathematical models have been evaluated to predict the consistency and the 28-day compressive strength of UHPC. The models used were Linear, Logarithmic, Inverse, Power, Compound, Quadratic, Cubic, Mixed, Sinusoidal and Cosine equations. The applicability and accuracy of these models were investigated using experimental data, which were collected from literature. The comparisons between the models and the experimental results confirm that the majority of models give acceptable prediction with a high accuracy and trivial error rates, except Linear, Mixed, Sinusoidal and Cosine equations. The assessment of the models using numerical methods revealed that the Quadratic and Inverse equations based models provide the highest predictability of the compressive strength at 28 days and consistency, respectively. Hence, they can be used as a reliable tool in mixture design of the UHPC.