• 제목/요약/키워드: strength of steel plane frame

검색결과 20건 처리시간 0.01초

개선소성힌지해석과 SUMT를 이용한 평면 강골조의 연속최적설계 (Optimum Design of Plane Steel Frame Structures Using Refined Plastic Hinge Analysis and SUMT)

  • 윤영묵;강문명;이말숙
    • 한국강구조학회 논문집
    • /
    • 제16권1호통권68호
    • /
    • pp.21-32
    • /
    • 2004
  • 본 연구에서는 다제약 설계변수를 갖는 비선형 문제를 무제약 최소화 문제로 전환하는 축차무제약 최소화기법(SUMT)과 효과적인 강골조의 2차비탄성해석 방법 중의 하나인 개선소성힌지해석 방법을 접목시킨 평면 강골조의 연속최적설계 모델 및 프로그램을 개발하였다. 최적설계를 위한 목적함수로는 강골조물을 구성하는 모든 부재의 중량 합을, 제약조건으로는 AISC-LRFD의 휨강도, 전단강도, 압축 및 인장강도, 국부좌굴 및 부재좌굴, 그리고 단면형상 등에 관한 설계기준을 사용하였다. 본 연구에서 개발한 연속최적설계 모델을 이용하여 여러 평면 강골조의 최적설계를 수행하였으며, 최적설계 견과로부터 개발한 연속최적설계 모델의 사용성, 타당성, 효율성 및 경제성 등을 검토하였다.

Effect of frame connection rigidity on the behavior of infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.227-241
    • /
    • 2020
  • An experimental study has been carried out to investigate the effect of beam to column connection rigidity on the behavior of infilled steel frames. Five half scale, single-story and single-bay specimens, including four infilled frames, as well as, one bare frame, were tested under in-plane lateral cyclic reversal loading. The connections of beam to column for bare frame as well as two infill specimens were rigid, whereas those of others were pinned. For each frame type, two different infill panels were considered: (1) masonry infill, (2) masonry infill strengthened with shotcrete. The experimental results show that the infilled frames with pinned connections have less stiffness, strength and potential of energy dissipation compared to those with rigid connections. Furthermore, the validity of analytical methods proposed in the literature was examined by comparing the experimental data with analytical ones. It is shown that the analytical methods overestimate the stiffness of infilled frame with pinned connections; however, the strength estimation of both infilled frames with rigid and pinned connections is acceptable.

반강접 접합부를 갖는 평면 강골조의 거동에 관한 해석적 연구 (Analytical Study on Behaviour of Plane Steel Frame with Semi-Rigid Beam-to-Column Connection)

  • 김종성
    • 한국강구조학회 논문집
    • /
    • 제21권5호
    • /
    • pp.483-492
    • /
    • 2009
  • 소성영역에서 부재의 강성감소, 휨효과 및 잔류응력의 영향을 고려하면서 극한 한계상태에서 강골조의 거동을 평가하기 위해 개선 소성 힌지법을 이용하여 평면강골조의 비선형해석을 실시하고, 강접 및 반강접 평면강골조의 다양한 모델에 대한 수치해석을 통하여 거동을 평가하는데 목적이 있다. 그리고 상용프로그램을 이용한 해석결과를 이용하여 반강접율의 변화에 따른 골조의 거동을 분석한다.

Effect of reinforcement strength on seismic behavior of concrete moment frames

  • Fu, Jianping;Wu, Yuntian;Yang, Yeong-bin
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.699-718
    • /
    • 2015
  • The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.

Influence of vertical load on in-plane behavior of masonry infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.609-627
    • /
    • 2016
  • Results of an experimental program are presented in this paper for the influence of vertical load on the in-plane behavior of masonry infilled steel frames. Five half-scaled single-story, single-bay steel frame specimens were tested under cyclic lateral loading. The specimens included four infilled frames and one bare frame. Two similar specimens as well as the bare frame had moment-resisting steel frames, while the remaining two specimens had pinned steel frames. For each frame type, one specimen was tested under simultaneous vertical and lateral loading, whereas the other was subjected only to lateral loading. The experimental results show that the vertical load changes the cracking patterns and failure modes of the infill panels. It improves dissipated hysteresis energy and equivalent viscous damping. Global responses of specimens, including stiffness and maximum strength, do no change by vertical loading considerably. Regarding the ductility, the presence of vertical load is ignorable in the specimen with moment-resisting frame. However, it increases the ductility of the infilled pinned frame specimen, leading to an enhancement in the m-factor by at least 2.5 times. In summary, it is concluded that the influence of the vertical load on the lateral response of infilled frames can be conservatively ignored.

Modal strength reduction factors for seismic design of plane steel frames

  • Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.65-88
    • /
    • 2011
  • A new method for the seismic design of plane steel moment resisting frames is developed. This method determines the design base shear of a plane steel frame through modal synthesis and spectrum analysis utilizing different values of the strength reduction (behavior) factor for the modes considered instead of a single common value of that factor for all these modes as it is the case with current seismic codes. The values of these modal strength reduction factors are derived with the aid of a) design equations that provide equivalent linear modal damping ratios for steel moment resisting frames as functions of period, allowable interstorey drift and damage levels and b) the damping reduction factor that modifies elastic acceleration spectra for high levels of damping. Thus, a new performance-based design method is established. The direct dependence of the modal strength reduction factor on desired interstorey drift and damage levels permits the control of deformations without their determination and secures that deformations will not exceed these levels. By means of certain seismic design examples presented herein, it is demonstrated that the use of different values for the strength reduction factor per mode instead of a single common value for all modes, leads to more accurate results in a more rational way than the code-based ones.

좌굴전 항복유도 장치(FLD) 개발에 관한 연구 (A Study on the Development of Force Limiting Devices(FLD) which Induce Yielding before Elastic Buckling)

  • 김철환;채원탁;오영석;김채영
    • 한국강구조학회 논문집
    • /
    • 제25권3호
    • /
    • pp.279-287
    • /
    • 2013
  • 세장한 부재에 압축력이 작용할 때, 부재는 탄성좌굴이 발생하게 되어 급격히 내하력을 상실하고 파괴에 도달하게 된다. 이러한 현상으로 인한 부재의 파괴는 종국적으로 구조체에 위해를 가하게 되어 붕괴원인이 되기도 한다. 본 연구에서는 세장한 부재에 압축력이 작용할 경우 부재가 탄성좌굴이 발생하기 이전에 항복하도록 유도하는 장치(응력제한장치)를 개발하는 것을 목적으로 하고 있다. 특히, 본 논문에서는 응력제한장치로서 면외저항판 방식을 제안하고 실험과 유한요소 해석을 수행하였다. 실험의 변수는 면외저항판의 두께 및 저항판의 경사도이다. 실험 및 해석결과 면외저항판 실험체는 항복후 소성영역에서 내력의 큰 저하없이 안정적인 거동을 나타내고 있어 응력제한방식으로서 유효성이 확인되었다.

파형강판벽의 등가 양방향 대각 스트럿 모델을 이용한 기존 건물의 내진성능 평가 (Seismic Performance Evaluation of Existing Buildings Using Equivalent Double Diagonal Strut Model for Corrugated Steel Plate Walls)

  • 이창환;손주기
    • 한국공간구조학회논문집
    • /
    • 제20권1호
    • /
    • pp.87-94
    • /
    • 2020
  • A corrugated steel plate wall (CSPW) system is advantageous to secure the strength and stiffness required for lateral force resistance because of its high out-of-plane stability. It can also stably dissipate large amounts of energy even after peak strength. In this paper, a preliminary study has been carried out to use the CSPW system in the seismic retrofit of existing reinforced concrete (RC) moment frame buildings. The seismic performance for an example building was evaluated, and then a step-by-step retrofit design procedure for the CSPW was proposed. An equivalent analytical model of the CSPW was also introduced for a practical analysis of the retrofitted building, and the strengthening effect was finally evaluated based on the results of nonlinear analysis.

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

Effective buckling length of steel column members based on elastic/inelastic system buckling analyses

  • Kyung, Yong-Soo;Kim, Nam-Il;Kim, Ho-Kyung;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.651-672
    • /
    • 2007
  • This study presents an improved method that uses the elastic and inelastic system buckling analyses for determining the K-factors of steel column members. The inelastic system buckling analysis is based on the tangent modulus theory for a single column and the application is extended to the frame structural system. The tangent modulus of an inelastic column is first derived as a function of nominal compressive stress from the column strength curve given in the design codes. The tangential stiffness matrix of a beam-column element is then formulated by using the so-called stability function or Hermitian interpolation functions. Two inelastic system buckling analysis procedures are newly proposed by utilizing nonlinear eigenvalue analysis algorithms. Finally, a practical method for determining the K-factors of individual members in a steel frame structure is proposed based on the inelastic and/or elastic system buckling analyses. The K-factors according to the proposed procedure are calculated for numerical examples and compared with other results in available references.