• Title/Summary/Keyword: strength of resin denture base

Search Result 107, Processing Time 0.029 seconds

The effect of denture base surface pretreatments on bond strengths of two long term resilient liners

  • Kulkarni, Rahul Shyamrao;Parkhedkar, Rambhau
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.1
    • /
    • pp.16-19
    • /
    • 2011
  • PURPOSE. Purpose of this study was to evaluate effect of two surface treatments, sandblasting and monomer treatment, on tensile bond strength between two long term resilient liners and poly (methyl methacrylate) denture base resin. MATERIALS AND METHODS. Two resilient liners Super-Soft and Molloplast-B were selected. Sixty acrylic resin (Trevalon) specimens with cross sectional area of $10{\times}10$ mm were prepared and divided into two groups of 30 specimens each. Each group was surface treated (n = 10) by sandblasting (250 ${\mu}$ alumina particles), monomer treatment (for 180 sec) and control (no surface treatment). Resilient liners were processed between 2 poly(methyl methacrylate) surfaces, in the dimensions of $10{\times}10{\times}3$ mm. Tensile strength was determined with Instron Universal testing machine, at a crosshead speed of 5 mm/min; and the modes of failure (adhesive, cohesive or mixed) were recorded. The data were analyzed using one-way ANOVA, followed by Tukey HSD test (${\alpha}$= 0.05). RESULTS. Monomer pretreatment of acrylic resin produced significantly higher bond strengths when compared to sandblasting and control for both resilient liners (P < .001). Sandblasting significantly decreased the bond strength for both the liners when compared to monomer pretreatment and control (P < .001). Mean bond strength of Super-Soft lined specimens was significantly higher than Molloplast-B in various surface treatment groups (P < .05). CONCLUSION. Surface pretreatment of the acrylic resin with monomer prior to resilient liner application is an effective method to increase bond strength between the base and soft liner. Sandblasting, on the contrary, is not recommended as it weakens the bond between the two.

A Study on the Bond Strength According to Retention forms when Complete Denture Repaired (총의치 수리시 유지형태에 따른 접착강도에 관한 연구)

  • Choi, Seog-Soon
    • Journal of Technologic Dentistry
    • /
    • v.12 no.1
    • /
    • pp.121-124
    • /
    • 1990
  • The purpose of this study was to evaluate the effect of three different retention forms on the bond strength when complete denture repaired. Total 75 samples were divided into 3 groups(Dove-tail form, bevel form, rabbit form). The completed resin samples were compressed in Instron Testing Machine until gross fracture occurred to examine the effect on the bond strength of resin base. The results of the experiment were as follows : 1. The difference of bond strength according to three retention forms were not statistically significant(P>0.05). 2. Dove-tail form was strongest to bond strength among the three retention forms.

  • PDF

Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials

  • Soygun, Koray;Bolayir, Giray;Boztug, Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • PURPOSE. This in vitro study intended to investigate the mechanical and thermal characteristics of Valplast, and of polymethyl methacrylate denture base resin in which different esthetic fibers (E-glass, nylon 6 or nylon 6.6) were added. MATERIALS AND METHODS. Five groups were formed: control (PMMA), PMMA-E glass, PMMA-nylon 6, PMMA-nylon 6.6 and Valplast resin. For the transverse strength test the specimens were prepared in accordance with ANSI/ADA specification No.12, and for the impact test ASTM D-256 standard were used. With the intent to evaluate the properties of transverse strength, the three-point bending (n=7) test instrument (Lloyd NK5, Lloyd Instruments Ltd, Fareham Hampshire, UK) was used at 5 mm/min. A Dynatup 9250 HV (Instron, UK) device was employed for the impact strength (n=7). All of the resin samples were tested by using thermo-mechanical analysis (Shimadzu TMA 50, Shimadzu, Japan). The data were analyzed by Kruskal-Wallis and Tukey tests for pairwise comparisons of the groups at the 0.05 level of significance. RESULTS. In all mechanical tests, the highest values were observed in Valplast group (transverse strength: $117.22{\pm}37.80$ MPa, maximum deflection: $27.55{\pm}1.48$ mm, impact strength: $0.76{\pm}0.03$ kN). Upon examining the thermo-mechanical analysis data, it was seen that the E value of the control sample was 8.08 MPa, higher than that of the all other samples. CONCLUSION. Although Valplast denture material has good mechanical strength, its elastic modulus is not high enough to meet the standard of PMMA materials.

A STUDY ON THE BOND STRENGH OF 4-META ACRYLIC RESIN DENTURE BASE TO COBALT-CHROMIUM ALLOYS (4-META의치상레진과 Cobalt-Chromium계 합금의 접착강도에 관한 연구)

  • Sung, Moo Gyung;Kim, Kwang Nam;Chang, Ik Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.29-51
    • /
    • 1990
  • This study was designed to compre the tensile bond strength of 4-META containging denture base resin to Co-Cr alloys after various surface treatments. Especially the surface treatment of sandblasting the mental with aluminum oxide and treating in oxidizing solution composed of 3% aqueous sulfuric acid with 1% potassium manganate were compared. Effect of surface roughness on bonding was measured after sandblasting with 50um, 300um aluminun oxide and polishing with emery pater. Also the effects of wax and wax solvent on bonding were observed. According to the type of polymerization process, heat-cured Meta-Dent resin and autopolymerizing Meta-Fast resin were used. For some specimnens, the tensile bond strength were measured agter three pre-conditions : 1day after bonding, immersed in water at $75^{\circ}C{\pm}3^{\circ}C$ for 4weeks, under normal ambient condition for 4weeks. The following results were obtained from this study : 1. The bond strengths of resins containing 4-META were significantly higher than those of conventional denture base resins(p<0.05). 2. Autopolymerizing Meta-Fast resin had higher bond strength than heat-cured Meta-Dent, resin(p<0.05). 3. The bond strengths of Biosil and Nobilium to 4-META containging resins were not significally different(p>0.05). 4. Stable adhesion can be achieved when mechanically roughen the metal surface by snadblasting with $50{\mu}m$ aluminum oxide than treating in an oxidizing soluing with potassium manganate(p<0.05). 5. Once the metal surface is contaminated with wax, the bond srtength decreased greatly in spite of wax wash with boiling water. But the bond strength recovered significantly with the use of wax solvent 6. Meta-Dent resin had higher bond strength when roughen the metal surface with $50{\mu}m$ aluminum oxide than with $300{\mu}m$ aluminum oxide(p<0.05). In case of Meta-Fast, resin, the use of $300{\mu}m$aluminum oxide was a little advantageous of bonding, but was statistically insignificant(p>0.05).

  • PDF

EFFECTS OF METAL SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH BETWEEN NI-CR DENTURE BASE AND RELINE RESINS (금속 표면처리방법이 니켈-크롬 합금 의치상과 첨상레진간의 결합강도에 미치는 영향)

  • Kim Young-Il;Jeong Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.396-405
    • /
    • 2002
  • The purpose of this study was to evaluate the effects of four metal surface treatments on the shear bond strength of reline resin to Ni-Cr alloy. The denture base metal used in this study was Ni-Cr alloy(Ticonium Premium 100. Ticonium Co., U.S.A.). 120 specimens were divided into five metal surface treatments: sandblasting only, MR. BOND(Tokuyama Corp.. Japan), Cesead Opaque Primer(Kuraray Co., Japan), METALPRIMER II(GC Corp., Japan) and Super-Bond C&B(Sun Medical Co., Japan) after sandblasting. They were bonded with one of three reline resins Mild Rebaron(GC Corp., Japan), Mild Rebaron LC(GC Corp., Japan) and Meta Base M(Sun Medical Co., Japan). Then they were thermocycled 1,000 times at temperature of $4^{\circ}C$ and $60^{\circ}C$. The shear bond strengths were measured using the universal testing machine(Instron, Model 4301, England) with a cross-head speed of 2 mm/min. The results were as follows : 1. All metal primers and adhesive cement significantly improved the bond strength of reline resin to Ni-Cr alloy compared with sandblasted specimens. 2. In Mild Rebaron and Mild Rebaron LC. Cesead Opaque Primer showed the highest bond strength, but the differences among Cesead Opaque Primer, MR. BOND and METALPRIMER II were not significant. The bond strength of Cesead Opaque Primer was significantly different with that of Super-Bond C&B. 3. In Meta Base M, Super-Bond C&B showed the highest bond strength, but there was no difference between Super-Bond C&B and three metal primers. 4. There was no difference in the bond strength between Mild Rebaron and Mild Rebaron LC when metal surface was treated with the same method. 5. The bond strengths of Mild Rebaron and Mild Rebaron LC treated with Cesead Opaque Primer were higher than that of Meta Base M. The bond strengths of Mild Rebaron treated with MR. BOND and METALPRIMER II was higher than that of Meta Base M, However, there was no difference among three reline resins treated with Super-Bond C&B.

A study of the tensile bond strength between Polyetherketoneketone (PEKK) and various veneered denture base resin (Polyetherketoneketone (PEKK)과 다양한 의치상용 전장 레진 간의 인장결합강도에 관한 연구)

  • Park, Yeon-Hee;Seo, Jae-Min;Lee, Jung-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.3
    • /
    • pp.231-238
    • /
    • 2022
  • Purpose. This study aimed to investigate the effect of different veneering methods on the tensile bond strength between polyetherketoneketone (PEKK) and denture base resins. Materials and methods. A total of 80 PEKK T-shaped specimens were fabricated and the primer (Visio.link) was applied after airborne-particle abrasion with 110 ㎛ alumina oxide powder. According to the veneering method, the specimens were divided into four groups (n = 20) to be veneered with the gingival colored packable photopolymerized composite resin (SR Adoro); flowable photopolymerized composite resin, (Crea.lign); heat-polymerized resin (Vertex); and self-polymerized resin (ProBase Cold). Each group was divided into two subgroups (n = 10) according to the artificial thermal aging. After the tensile bond strength measurement via universal testing machine, the fracture sections of all specimens were observed. Two-way ANOVA and Tukey's HSD post hoc test were used for the statistical analysis (α = .05). Results. The results of the two-way ANOVA showed statistically significant differences in the tensile bond strength according to the veneering method and artificial thermal aging of denture base resins (P<.001). The highest tensile bond strength showed in the packable photopolymerized resin group before and after the artificial thermal aging. The lowest tensile bond strength showed in the heat-polymerized resin group. The mixed and adhesive fracture showed in all groups. Conclusion. The veneering method and artificial thermal aging can influence in the tensile bond strength between the resin and PEKK. The artificial thermal aging can reduce the tensile bond strength.

THE TENSILE BOND STRENGTH AND ELASTIC MODULUS OF THE SOFT DENTURE LINING MATERIALS (연성 의치상 이장재의 인장결합 강도와 탄성계수에 관한 연구)

  • Kim, Byung-Jin;Koh, Jun-Won;Lee, Yong-Keun;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.3
    • /
    • pp.458-469
    • /
    • 1997
  • This study was to compare the tensile bond strength and flexibility of four different soft liners(Coe-Soft, Soft Relining, Soft-Liner, Dura Base Soft) before & after thermocycling. Each soft liner was bonded to denture base resin block, and measured the tensile bond strength and modulus of elasticity using Universal testing machine. The mean value of tensile bond strength and modulus of elasticity for each experimental groups were statistically processed by SPSS(Statistical Package of Social Science). The obtained results were as follows : 1. Dura Base Soft had the highest tensile bond strength and Coe-Soft had the lowest tensile bond strength. 2. Coe-Soft had the lowest modulus of elasticity, and Dura Base Soft had the highest modulus of elasticity. 3. Thermocycling had no effects on the tensile bond strength and modulus of elasticity of all the soft liners. 4. The failure modes of Coe-Soft, Soft Relining, Soft Liner were mainly cohesive failure, and that of Dura Base Soft were mainly adhesive failure.

  • PDF

The Effect of Packing Method of Relining Material on the Flexural Strength of Denture Base Resin (첨상용 레진의 성형법이 의치상의 굴곡강도에 미치는 영향)

  • Kim, Min-Chul;Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.197-207
    • /
    • 2011
  • The study aimed at examining how different reline resins affect flexural strength and flexural modulus of denture base. A total of 80 specimens ($64{\times}10{\times}3.3$ mm, according to ISO 1567:1999) of heat-polymerized resin, 40 specimens for (Lucitone199(Dentsply Int., NewYork, USA), SR Ivocap(Ivoclar AG, Schaan, Liechtenstein)) respectively, were polymerized according to the manufacturer's instructions and divided into eight groups(n = 10). Control group specimens remained intact. Specimens in the other groups were abraded on both sides to 2 mm thickness, and were relined in 1.3 mm thickness with 3 types of resins (Lucitone199(Dentsply), SR Ivocap(Ivoclar), and Rebase II(Tokuyama Co., Ltd, Tokyo, Japan)). All specimens were preserved in distilled water at $37^{\circ}C$ for 50 hours, and then were subjected to flexural strength testing in a universal testing machine using 3-point loading. A crosshead speed of 5 mm/min was used, and the distance between the supports was 50 mm. Data analyses included one-way analysis of variance(ANOVA) and the Tukey Honestly Significant Difference test (p=.05). Both heat-polymerized resin groups and auto-polymerized resin groups showed statistically low flexural strength and flexural modulus than control groups. Specimens relined with Lucitone 199 showed significantly higher flexural strength and flexural modulus than those relined with SR-Ivocap. Specimens relined with auto-polymerized resin showed significantly lower flexural strength and flexural modulus than those relined with heat-polymerized resin. Relining with heat-polymerized resins showed superior mechanical properties to relining with an auto-polymerized resin. Relining with the same heat-polymerized resin as the denture base does not affect mechanical properties of a denture. Lucitone199 using a compression-mould technique resulted in the highest flexural strength.

A Study on the Shear Bond Strength of Resin Artificial Tooth Depending on Repair Techniques (레진 인공치아의 재부착 방법에 따른 전단결합강도에 관한 연구)

  • Kim, Ik-Jung;Lee, Jong-Hyuk;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.143-151
    • /
    • 2005
  • The purpose of this study was to evaluate the most effective method for repairing the exfoliated resin teeth. The specimens were divided into five groups according to repair method and presence of retention holes. The groups were as follows Group1 : Control group Group2 : Sprinkle method with no retention holes Group3 : Sprinkle method with retention holes Group4 : Flask method with no retention holes Group5 : Flask method with retention holes The results were as follows. 1. According to shear bond strength, the value decreased in the order of group1, group5, group3, group2, group4 and there were significant difference between, each group except between group1 and groups5, group2 and group3, group2 and group4(p < 0.05). 2. According to observations of the exfoliation surface, group2 and 4 showed more failure in the denture base resin and repair resin interface, but in group1, 3 and 5 there were more mixed failures. From the results above, there were no significant difference between repair methods without retention holes. But when comparing groups with retention holes, the flask method showed significantly improved results compared to the sprinkle method. Especially, group5 showed similar results as the control group.

A STUDY REPAIRED JOINT STRENGTH OF COMPLETE DENTURE (의치수리(義齒修理)에 있어 파절접합부(破折接合部)의 조작형태(造作形態)가 의치(義齒)의 결합력(結合力)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Lee Woo-Hyun;Heo Seong-Joo;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.101-110
    • /
    • 1991
  • The purpose of this study was to compare the repaired joint strength among several edge profiles after denture repair. For this study, eight edge profiles were used for repair methods and five self-curing resin brands were used for repair materials. Break away loads were tested after 1 hr., 24 hrs. and 1 week. Instron was used for testing the transverse strength of repaired specimen. The results were as follows. 1. Repaired joint strength was about 35-65% of that of original specimen. 2. Joint strengths of round, inverse knife, inverse rabbit, lap ogee joint were higher tnan that of traditional simple butt joint 3. Joint strength of the simple butt joint was low significant. 4. Joint strengths after 1 hr. specimen were lower than those of 24 hrs. and 1 week specimens in joint strengths. 5. There were no significant differences between 24 hrs. and 1 week specimens in joint strengths. 6. It look more than 24 hours to gain satisfactory physical property after repairing the fractured denture base when self-curing resin was used for repair.

  • PDF