• Title/Summary/Keyword: strength model

Search Result 5,347, Processing Time 0.035 seconds

Evaluation of Biomechanical Properties of Fractured Adjacent Soft Tissue Due to Fracture Site Spacing During Closed Reduction After Forearm Fracture: Finite Element Analysis (전완 골절 후 도수 정복 시 골절 부위 간격에 따른 골절 인접 연부 조직의 생체역학적 특성 평가: 유한요소해석)

  • Park, Jun-Sung;Lee, Sang Hyun;Song, Chanhee;Ro, Jung Hoon;Lee, Chiseung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.308-318
    • /
    • 2022
  • The purpose of this study is to evaluate the biomechanical properties of fractured adjacent soft tissue during closed reduction after forearm fracture using the finite element method. To accomplish this, a finite element (FE) model of the forearm including soft tissue was constructed, and the material properties reported in previous studies were implemented. Based on this, nine finite element models with different fracture types and fracture positions, which are the main parameters, were subjected to finite element analysis under the same load and boundary conditions. The load condition simulated the traction of increasing the fracture site spacing from 0.4 mm to 1.6 mm at intervals of 0.4 mm at the distal end of the radioulnar bone. Through the finite element analysis, the fracture type, fracture location, and displacement were compared and analyzed for the fracture site spacing of the fractured portion and the maximum equivalent stress of the soft tissues adjacent to the fracture(interosseous membrane, muscle, fat, and skin). The results of this study are as follows. The effect of the major parameters on the fracture site spacing of the fractured part is negligible. Also, from the displacement of 1.2 mm, the maximum equivalent stress of the interosseous membrane and muscle adjacent to the fractured bone exceeds the ultimate tensile strength of the material. In addition, it was confirmed that the maximum equivalent stresses of soft tissues(fat, skin) were different in size but similar in trend. As a result, this study was able to numerically confirm the damage to the adjacent soft tissue due to the fracture site spacing during closed reduction of forearm fracture.

Structural Behavior of RC Beams with Headed Bars using Finite Element Analysis (유한요소해석 기반 확대머리 이형철근 상세 따른 RC보의 구조성능 효과 분석)

  • Kim, Kun-Soo;Park, Ki-Tae;Park, Chang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, the structural behavior by the details of the lap region with the headed bar was estimated through finite element analysis. To solve the finite element analysis of the anchorage region with complex contact conditions and nonlinear behavior, a quasi-static analysis technique by explicit dynamic analysis was performed. The accuracy of the finite element model was verified by comparing the experimental results with the finite element analysis results. It was confirmed that the quasi-static analysis technique well reflected the behavior of enlarged headed bar connection. As a result of performing numerical analysis using 21 finite element models with various development lengths and transverse reinforcement indexes, it was confirmed that the increase of development length and transverse reinforcement index improved the maximum strength and ductility. However, to satisfy the structural performance, it should be confirmed that both design variables(development length and transverse reinforcement index) must be enough at the design criteria. In the recently revised design standard(KDS 14 20 52 :2021), a design formula of headed bar that considers both the development length and the transverse reinforcing bar index is presented. Also the results of this study confirmed that not only the development length but also transverse reinforcing bars have a very important effect.

Mechanical Modeling of Pen Drop Test for Protection of Ultra-Thin Glass Layer (초박형 유리층 보호를 위한 펜 낙하 시험의 기계적 모델링)

  • Oh, Eun Sung;Oh, Seung Jin;Lee, Sun-Woo;Jeon, Seung-Min;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.49-53
    • /
    • 2022
  • Ultra-thin glass (UTG) has been widely used in foldable display as a cover window for the protection of display and has a great potential for rollable display and various flexible electronics. The foldable display is under impact loading by bending and touch pen and exposed to other external impact loads such as drop while people are using it. These external impact loads can cause cracks or fracture to UTG because it is very thin under 100 ㎛ as well as brittle. Cracking and fracture lead to severe reliability problems for foldable smartphone. Thus, this study constructs finite element analysis (FEA) model for the pen drop test which can measure the impact resistance of UTG and conducts mechanical modeling to improve the reliability of UTG under impact loading. When a protective layer is placed to an upper layer or lower layer of UTG layer, stress mechanism which is applied to the UTG layer by pen drop is analyzed and an optimized structure is suggested for reliability improvement of UTG layer. Furthermore, maximum principal stress values applied at the UTG layer are analyzed according to pen drop height to obtain maximum pen drop height based on the strength of UTG.

Upstream Risks in Domestic Battery Raw Material Supply Chain and Countermeasures in the Mineral Resource Exploration Sector in Korea (국내 배터리원료광종 공급망 업스트림 리스크와 광물자원탐사부문에서의 대응방안)

  • Oh, Il-Hwan;Heo, Chul-Ho;Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.399-406
    • /
    • 2022
  • In line with the megatrend of 2050 carbon neutrality, the amount of critical minerals used in clean-energy technology is expected to increase fourfold and sixfold, respectively, according to the Paris Agreement-based scenario as well as the 2050 carbon-neutrality scenario. And, in the case of Korea, in terms of the battery supply chain used for secondary batteries, the midstream that manufactures battery materials and battery cell packs shows strength, but the upstream that provides and processes raw materials is experiencing difficulties. The Korea Institute of Geoscience and Mineral Resources has established a strategy to secure lithium, nickel, and cobalt and is conducting surveys to respond to the upstream risk of these types of battery raw materials. In the case of lithium, exploration has been carried out in Uljin, Gyeongsangbuk-do since 2020, and by the end of 2021, the survey area was selected for precision exploration by synthesizing all exploration data and building a 3D model. Potential resources will be assessed in 2022. In the case of nickel, the prospective site will be selected by the end of 2022 through a preliminary survey targeting 10 nickel sulfide deposits that have been prospected in the past. In the case of cobalt, Boguk cobalt is known only in South Korea, but there is only a record that cobalt was produced as a minor constituent of hydrothermal deposit. According to the literature, a cobalt ore body was found in the contact area between serpentinite and granite, and a protocol for cobalt exploration in Korea will be established.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

Systematic Review of the Effects of Blood Flow Exercise for Health-care Promotion: A Focus on Korean Domestic Research (헬스케어 증진을 위한 혈류조절 가압 운동의 효과에 대한 체계적 문헌고찰 ; 국내 연구 중심으로)

  • Seo, Tae-Hwa;Kim, Dong-Won
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.8
    • /
    • pp.447-454
    • /
    • 2020
  • The purpose of this study was to determine the clinical effects of blood flow regulation exercise for improving patients' health care and its usefulness as a rehabilitation model for various diseases by analyzing and examining the existing literature. A literature review of Korean academic journals published over a 10-year period, from 2010 to 2019, was conducted using words such as "blood flow regulation," "blood flow restriction," "low-intensity exercise," and "Kaatsu." Kaatsu is a blood flow regulation exercise developed in 1966 by Dr. Yoshiaki Sato of Japan. It is an efficient and effective exercise method that uses blood flow regulation bands that increase the secretion of growth hormones to develop muscles within a short time, improves blood circulation and metabolism to prevent and improve adult diseases, shortens the rehabilitation period, and improves cardiovascular function. The study participants consisted of 10 patients, of whom four were elderly, four had obesity, one was a stroke patient, and one was a trauma patient. The results of this study show that the blood flow regulation exercise, which is a low-intensity exercise, has the same effect as high-intensity exercise, which supports the evidence that it is a highly efficient exercise method for muscle development and rehabilitation of the elderly, adolescents, and patients with injuries who have difficulty in general exercising. For future studies, further reviews are necessary to verify the effectiveness of the exercise method according to blood flow regulation site and type of disease.

Analysis of CO/CO2 Ratio Variability According to the Origin of Greenhouse Gas at Anmyeon-do (안면도 지역 온실기체 기원에 따른 CO/CO2 비율 변동성 분석 연구)

  • Kim, Jaemin;Lee, Haeyoung;Kim, Sumin;Chung, Chu-Yong;Kim, Yeon-Hee;Lee, Greem;Choi, Kyung Bae;Lee, Yun Gon
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.625-635
    • /
    • 2021
  • South Korea established the 2050 Carbon Neutral Plan in response to the climate crisis, and to achieve this policy, it is very important to monitor domestic carbon emissions and atmospheric carbon concentration. Both CO2 and CO are emitted from fossil fuel combustion processes, but the relative ratios depend on the combustion efficiency and the strength of local emission regulations. In this study, the relationship between CO2 and CO was analyzed using ground observation data for the period of 2018~2020 at Anmyeon-do site and the CO/CO2 ratio according to regional origin during high CO2 cases was investigated based on the footprint simulated from Stochastic Time-Inverted Lagrangian Transport (STILT) model. CO2 and CO showed a positive correlation with correlation coefficient of 0.66 (p < 0.01), and averaged footprints during high CO2 cases confirmed that air particles mainly originated from eastern and north-eastern China, and inland of Korean Peninsula. In addition, it was revealed that among the cases of high CO2 concentration, when the CO/CO2 ratio is high, the industrial area of eastern China is greatly affected, and when the ratio is low, the contribution of the domestic region is relatively high. The ratio of CO2 and CO in this study is significant in that it can be used as a useful factor in determining the possibility of domestic and foreign origins of climate pollutants.

Damage Analysis of Manganese Crossings for Turnout System of Sleeper Floating Tracks on Urban Transit (도시철도 침목플로팅궤도 분기기 망간크로싱의 손상해석)

  • Choi, Jung-Youl;Yoon, Young-Sun;Ahn, Dae-Hee;Han, Jae-Min;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • The turnout system of the sleeper floating tracks (STEDEF) on urban transit is a Anti-vibration track composed of a wooden sleeper embedded in a concrete bed and a sleeper resilience pad under the sleeper. Therefore, deterioration and changes in spring stiffness of the sleeper resilience pad could be cause changes in sleeper support conditions. The damage amount of manganese crossings that occurred during the current service period of about 21 years was investigated to be about 17% of the total amount of crossings, and it was analyzed that the damage amount increased after 15 years of use (accumulated passing tonnage of about 550 million tons). In this study, parameter analysis (wheel position, sleeper support condition, and dynamic wheel load) was performed using a three-dimensional numerical model that simulated real manganese crossing and wheel profile, to analyze the damage type and cause of manganese crossing that occurred in the actual field. As a result of this study, when the voided sleeper occurred in the sleeper around the nose, the stress generated in the crossing nose exceeded the yield strength according to the dynamic wheel load considering the design track impact factor. In addition, the analysis results were evaluated to be in good agreement with the location of damage that occurred in the actual field. Therefore, in order to minimize the damage of the manganese crossing, it is necessary to keep the sleeper support condition around the nose part constant. In addition, by considering the uniformity of the boundary conditions under the sleepers, it was analyzed that it would be advantageous to to replace the sleeper resilience pad together when replacing the damaged manganese crossing.

A study on the measurement and processing of medical service experience data - From the perspective of realizing patient-centeredness - (의료서비스 경험데이터의 측정 및 가공에 관한 연구 -환자중심성 실현 관점에서-)

  • Jinho, Ahn;Jungmin, Choi
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.147-159
    • /
    • 2023
  • This study is a study to develop a model for measurement and processing of experience data, which is emerging as a core value in quality management of medical services. In the theoretical background, a literature study was conducted on the importance of experience in medical service, measurement and processing of experience data, and realization of patient-centeredness. Based on these literature and theoretical background research results, operational definitions were performed for the following four research variables, and statistical tests were conducted. Hypothesis 1 is the effect of measuring experience data from the perspective of three factors on persona modeling, Hypothesis 2 is the effect of persona modeling on service blueprint visualization, Hypothesis 3 is the effect of service blueprint visualization on realization of patient-centeredness, and Hypothesis 4 is persona modeling This is the effect that modeling has on the realization of patient-centeredness. After data-based testing of factor analysis, reliability analysis, and correlation analysis, all four hypotheses were adopted as a result of verification using regression analysis. In conclusion, in an era where it is difficult to recognize the value of having only good medical staff and medical equipment in hospitals, it was possible to grasp the meaning that what kind of medical service experience is continuously obtained is more important to patients than the effectiveness of medical staff and medical equipment. In the era of the service economy, the core of hospital service competitiveness is providing attractive experiences, which is the real strength of hospitals, so the measurement and processing of experience data, which is the subject of this study, will have an important meaning in realizing patient-centeredness and realizing smart hospitals.

Study on collapse mechanism and treatment measures of portal slope of a high-speed railway tunnel

  • Guoping Hu;Yingzhi Xia;Lianggen Zhong;Xiaoxue Ruan;Hui Li
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.111-123
    • /
    • 2023
  • The slope of an open cut tunnel is located above the exit of the Leijia tunnel on the Changgan high-speed railway. During the excavation of the open cut tunnel foundation pit, the slope slipped twice, a large landslide of 92500 m3 formed. The landslide body and unstable slope body not only caused the foundation pit of the open cut tunnel to be buried and the anchor piles to be damaged but also directly threatened the operational safety of the later high-speed railway. Therefore, to study the stability change in the slope of the open cut tunnel under heavy rain and excavation conditions, a 3D numerical calculation model of the slope is carried out by Midas GTS software, the deformation mechanism is analyzed, anti-sliding measures are proposed, and the effectiveness of the anti-sliding measures is analyzed according to the field monitoring results. The results show that when rainfall occurs, rainwater collects in the open cut tunnel area, resulting in a transient saturation zone on the slope on the right side of the open cut tunnel, which reduces the shear strength of the slope soil; the excavation at the slope toe reduces the anti-sliding capacity of the slope toe. Under the combined action of excavation and rainfall, when the soil above the top of the anchor pile is excavated, two potential sliding surfaces are bounded by the top of the excavation area, and the shear outlet is located at the top of the anchor pile. After the excavation of the open cut tunnel, the potential sliding surface is mainly concentrated at the lower part of the downhill area, and the shear outlet moves down to the bottom of the open cut tunnel. Based on the deformation characteristics and the failure mechanism of the landslides, comprehensive control measures, including interim emergency mitigation measures and long-term mitigation measures, are proposed. The field monitoring results further verify the accuracy of the anti-sliding mechanism analysis and the effectiveness of anti-sliding measures.