• Title/Summary/Keyword: strength disaster

Search Result 389, Processing Time 0.026 seconds

Experimental and numerical investigation on the thickness effect of concrete specimens in a new tensile testing apparatus

  • Lei Zhou;Hadi Haeri;Vahab Sarfarazi;Mohammad Fatehi Marji;A.A. Naderi;Mohammadreza Hassannezhad Vayani
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.71-84
    • /
    • 2023
  • In this paper, the effects of the thickness of cubic samples on the tensile strength of concrete blocks were studied using experimental tests in the laboratory and numerical simulation by the particle flow code in three dimensions (PFC3D). Firstly, the physical concrete blocks with dimensions of 150 mm×190 mm (width×height) were prepared. Then, three specimens for each of seven different samples with various thicknesses were built in the laboratory. Simultaneously with the experimental tests, their numerical simulations were performed with PFC3D models. The widths, heights, and thicknesses of the numerical models were the same as those of the experimental samples. These samples were tested with a new tensile testing apparatus. The loading rate was kept at 1 kg/sec during the testing operation. Based on these analyses, it is concluded that when the thickness was less than 5 cm, the tensile strength decreased by increasing the sample thickness. On the other hand, the tensile strength was nearly constant when the sample thickness was raised to more than 5 cm (which can be regarded as a threshold limit for the specimens' thickness). The numerical outputs were similar to the experimental results, demonstrating the validity of the present analyses.

Strength and stiffness characteristics of cement paste-slime mixtures for embedded piles

  • Yong-Hoon Byun;Mi Jeong Seo;WooJin Han;Sang Yeob Kim;Jong-Sub Lee
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.359-370
    • /
    • 2023
  • Slime is produced by excavation during the installation of embedded piles, and it tends to mix with the cement paste injected into the pile shafts. The objective of this study is to investigate the strength and stiffness characteristics of cement pasteslime mixtures. Mixtures with different slime ratios are prepared and cured for 28 days. Uniaxial compression tests and elastic wave measurements are conducted to obtain the static and dynamic properties, respectively. The uniaxial compressive strengths and static elastic moduli of the mixtures are evaluated according to the curing period, slime ratio, and water-cement ratio. In addition, dynamic properties, e.g., the constrained, shear, and elastic moduli, are estimated from the compressional and shear wave velocities. The experimental results show that the static and dynamic properties increase under an increase in the curing period but decrease under an increase in the slime and water-cement ratios. The cement paste-slime mixtures show several exponential relationships between their static and dynamic properties, depending on the slime ratio. The bearing mechanisms of embedded piles can be better understood by examining the strength and stiffness characteristics of cement paste-slime mixtures.

Effect of high-strength concrete on shear behavior of dry joints in precast concrete segmental bridges

  • Jiang, Haibo;Chen, Ying;Liu, Airong;Wang, Tianlong;Fang, Zhuangcheng
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1019-1038
    • /
    • 2016
  • The use of high-strength concrete (HSC) in precast concrete segmental bridges (PCSBs) can minimize the superstructure geometry and reduce beam weight, which can accelerate the construction speed. Dry joints between the segments in PCSBs introduce discontinuity and require special attention in design and construction. Cracks in dry joints initiate more easily than those in epoxy joints in construction period or in service. Due to the higher rupture strength of HSC, the higher cracking resistance can be achieved. In this study, shear behavior of dry joints in PCSBs was investigated by experiments, especially focusing on cracking resistance and shear strength of HSC dry joints. It can be concluded that the use of HSC can improve the cracking resistance, shear strength, and ductility of monolithic, single-keyed and three-keyed specimens. The experimental results obtained from tests were compared with the AASHTO 2003 design provisions. The AASHTO 2003 provision underestimates the shear capacity of single-keyed dry joint C50 and C70 HSC specimens, underestimates the shear strength of three-keyed dry joint C70 HSC specimens, and overestimates the shear capacity of three-keyed dry joint C50 HSC specimens.

Experimental study of strength characteristics of reinforced broken rock mass

  • Yanxu Guo;Qingsong Zhang;Hongbo Wang;Rentai Liu;Xin Chen;Wenxin Li;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • As the structure of broken rock mass is complex, with obvious discontinuity and anisotropy, it is generally necessary to reinforce broken rock mass using grouting in underground construction. The purpose of this study is to experimentally investigate the mechanical properties of broken rock mass after grouting reinforcement with consideration of the characteristics of broken rock mass (i.e., degree of fragmentation and shape) and a range of reinforcement methods such as relative strength ratio between the broken rock mass and cement-based grout stone body (λ), and volumetric block proportion (VBP) representing the volumetric ratio of broken rock mass and the overall cement grout-broken rock mass mixture after the reinforcement. The experimental results show that the strength and deformation of the reinforced broken rock mass is largely determined by relative strength ratio (λ) and VBP. In addition, the enhancement in compressive strength by grouting is more obvious for broken rock mass with spherical shape under a relatively high strength ratio (e.g., λ=2.0), whereas the shape of rock mass has little influence when the strength ratio is low (e.g., λ=0.1). Importantly, the results indicate that columnar splitting failure and inclined shear failure are two typical failure modes of broken rock mass with grouting reinforcement.

Analytical study of the verification of the performance improvement of the strengthening systems for the open cut tunnel (개착식터널의 내진성능보강 효과분석에 대한 해석적 연구)

  • Kim, Ki-Hong;Kwon, Min-Ho;Jang, Young-Do
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.456-461
    • /
    • 2011
  • Recently the design specification has been advanced with preventing earthquake disaster in Korea because of increasing occurrence of large size earthquake. A composite plate with ductile fiber is proposed, which can enhance the performance of built tunnel in both strength and ductility. This study is to focus to verify the effect of strengthening of existing tunnels which is built without earthquake type load scenario, so that it can provide the safety of existing urban subway system against earthquakes.

  • PDF

Study on durability of densified high-performance lightweight aggregate concrete

  • Wang, H.Y.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.499-510
    • /
    • 2007
  • The densified mixture design algorithm (DMDA) was employed to manufacture high-performance lightweight concrete (LWAC) using silt dredged from reservoirs in southern Taiwan. Dredged silt undergoing hydration and high-temperature sintering was made into a lightweight aggregate for concrete mixing. The workability and durability of the resulting concrete were examined. The LWAC made from dredged silt had high flowability, which implies good workability. Additionally, the LWAC also had good compressive strength and anti-corrosion properties, high surface electrical resistivity and ultrasonic pulse velocity as well as low chloride penetration, all of which are indicators of good durability.

A Study on the Spalling Properties of High Strength Concrete Using Synthetic Fiber (유기섬유를 혼입한 고강도 콘크리트의 폭렬 특성에 관한 실험적 연구)

  • Jeon, Chan Ki;Jeon, Joong Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.1
    • /
    • pp.18-26
    • /
    • 2012
  • Accordingly architectural structure is getting high-rise and bigger, a use of high strength and high performance concrete has been increasing. High performance concrete has cons of explosion in a fire. This Explosion in the fire can cause the loss of the sheath on a concrete surface, therefore it effects that increasing a rate of heat transmission between the steel bar and inner concrete. Preventing this explosion of high performance concrete in the fire, many kinds of researches are now in progressing. Typically, researches with using Polypropylene-fiber and Steel-fiber can prove controling the explosion, but the reduction of mobility was posed as a problem of workability. Consequently, to solve the problem as mentioned above, concrete cans secure fire resisting capacity through the using of coating liquid, including Ester-lubricant and non-ionic characteristic surfactant. This research has been drawn a ideal condition in compressive strength areas of concrete by an experiment. When applying 13mm of polyamide-fiber, proper fiber mixing volume by compressive strength areas of concrete is $0.8kg/m^3$ in 60MPa, $1.0kg/m^3$ in 80MPa, $1.5kg/m^3$ in $100MPa/m^3$. These amount of a compound can control the explosion.

Estimation of Strength Parameter of Soil-NSS Mixture by Triaxial Compression Test (삼축압축시험을 이용한 NSS 혼합토의 강도정수 평가)

  • Oh, Sewook;Lee, Gilho;Kwon, Hyekkee;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.65-71
    • /
    • 2013
  • Despite of the various merits of soil pavement, it has not been widely adapted because portland cement was conventionally used as soil stabilizer to improve the mechanical properties such strength parameters. Recently, natural soil stabilizer(NSS) were developed and virtually adopted to several case of soil pavement construction under control of heavy metal pollution compared to cement-used cases. However, the application of natural soil stabilizer is not settled yet, and empirical design have been widely adopted. In this study, therefore, the strength parameter of soil-NSS mixture was estimated by some triaxial compression tests, CU-test. From the tests, the relationship between curing period and strength parameter such as internal friction and effective cohesion was examined. As a result, effective cohesion of dredged clay and granite soil increased as curing time is increased. However, internal friction is almost same result in all soil type used in this study.

Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils (풍화토와 점성토 위주의 토석류 거동과 유동특성)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • The risks of debris flows caused by climate change have increased significantly around the world. Recently, landslide disaster prevention technology is more focused on the failure and post-failure dynamics to mitigate the hazards in flow-prone area. In particular, we should define the soil strength and flow characteristics to estimate the debris flow mobility in the mountainous regions in Korea. To do so, we selected known ancient landslides area: Inje, Pohang and Sangju debris flows. Firstly we measured physical and mechanical properties: liquidity index and undrained shear strength by fall cone penetrometer. From the test results, we found that there is a possible relationship between liquidity index and undrained shear strength, $C_{ur}=(1.2/I_L)^{3.3}$, in the selected areas, even though they were different in geological compositions. Assuming that the yield stress is equal to the undrained shear strength at the initiation of sliding, we examined the flow characteristics of weathered soils in Korea. When liquidity index is given as 1, 1.5 and 3.0, the debris flow motion of weathered soils is compared with that of mud-rich sediments, which are known as low-activity clays. At $I_L=1$, it seems that debris flow could reach approximately 250m after 5 minutes. As liquidity index increased from 1 to 3, the debris flow propagation of weathered soils is twice than that of low-activity clays. It may be due to the fact that soil masses mixed with the ambient water and then highly fragmented during flow, thereby leading to the high mobility. The results may help to predict the debris flow propagation and to develop disaster prevention technology at similar geological settings, especially for the weathered soils, in Korea.

Engineering Characteristics of Liquid Filler Using Marine Clay and In-situ Soil (해양점토와 현장토를 활용한 유동성 채움재의 공학적 특성)

  • Oh, Sewook;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.25-32
    • /
    • 2020
  • The underground utilities installed under the ground is an important civil engineering structure, such as water supply and sewerage pipes, underground power lines, various communication lines, and city gas pipes. Such underground utilities can be exposed to risk due to external factors such as concentrated rainfall and vehicle load, and it is important to select and construct an appropriate backfill material. Currently, a method mainly used is to fill the soil around the underground utilities and compact it. But it is difficult to compact the lower part of the buried pipe and the compaction efficiency decreases, reducing the stability of the underground utilities and causing various damages. In addition, there are disadvantages such as a decrease in ground strength due to disturbance of the ground, a complicated construction process, and construction costs increase because the construction period becomes longer, and civil complaints due to traffic restrictions. One way to solve this problem is to use a liquid filler. The liquid filler has advantages such as self-leveling ability, self-compaction, fluidity, artificial strength control, and low strength that can be re-excavated for maintenance. In this study, uniaxial compression strength test and fluidity test were performed to characterize the mixed soil using marine clay, stabilizer, and in-situ soil as backfill material. A freezing-thawing test was performed to understand the strength characteristics of the liquid filler by freezing, and in order to examine the effect of the filling materials on the corrosion of the underground pipe, an electrical resistivity test and a pH test were performed.