• Title/Summary/Keyword: strength degradation

Search Result 1,115, Processing Time 0.03 seconds

Undrained solution for cavity expansion in strength degradation and tresca soils

  • Li, Chao;Zou, Jin-feng;Sheng, Yu-ming
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • An elastic-plastic solution for cavity expansion problem considering strength degradation, undrained condition and initial anisotropic in-situ stress is established based on the Tresca yield criterion and cavity expansion theory. Assumptions of large-strain for plastic region and small-strain for elastic region are adopted, respectively. The initial in-situ stress state of natural soil mass may be anisotropic caused by consolidation history, and the strength degradation of soil mass is caused by structural damage of soil mass in the process of loading analysis (cavity expansion process). Finally, the published solutions are conducted to verify the suitability of this elastic-plastic solution, and the parametric studies are investigated in order to the significance of this study for in-situ soil test.

Influences of Particle Property and Its Size Impact Damage and Strength Degradation in Silicon Carbide Ceramics (탄화규소 세라믹의 충격손상 및 강도저하에 미치는 입자의 재질 및 크기의 영향)

  • 신형섭;전천일랑;서창민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1869-1876
    • /
    • 1992
  • The effect of particle property on FOD(foreign object damage) and strength degradation in structural ceramics especially, silicon carbide was investigated by accelerating a spherical particle having different material and different size. The damage induced showed significant differences in their patterns with increase of impact velocity. Also percussion cone was formed at the back part of specimen when particle size became large and its impact velocity exceeded a critical value. The extent of ring cracks was linearly related to particle size, however the impact of steel particle produced larger ring cracks than that of SiC particle. Increasing impact velocity the residual strength showed different degradation behaviors according to particle and its size. In the region the impact site represents nearly elastic deformation behavior, the residual strength was dependent upon the depth of cone crack regardless of particle size. However in elastic- plastic deformation region, the radial cracks led to rapid drop in residual strength.

Preformulation Study of Prokidin : Chemical Stability

  • Lee, Yun-Jin;Chun, In-Koo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.88-88
    • /
    • 2001
  • The effects of pH and temperature on the degradation of prokidn in various buffered aqueous solutions(pH 1.32~9.66) and temperatures (35, 45 and 6$0^{\circ}C$ were investigated. The effect of ionic strength on the degradation of prokidin was also measured by varying ionic strength (0.0466~1.5) at pH 1.35 and 45$^{\circ}C$ The effect of metal ions on the degradation of prokidin at pH 7.35 and 3.98 was observed. The degradation of prokidin followed the pseudo- first- order kinetics. The degradation rate of prokidin showed pH-dependent and temperature-dependent patterns. Prokidin was very stable at the pH below 3.95, where half-lives at 35, 45 and 6$0^{\circ}C$were 294, 206 and 107 day, respectively. However, it degraded very rapidly at pH above 6.49; the half-lives at 35, 45 and 6$0^{\circ}C$were 60, 25 and 13 day, respectively. As ionic strength increased, the degradation rate of prokidin increased. Some metal ions increased the degradation rate in the rank order of Mn > Fe > Cu >Fe On the other hand. other metal ions such as Bi, Ba. Zn, Ni, Co did not show unfavorable effect.

  • PDF

Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine (자동차 엔진룸용 전장품 유무연 솔더 접합부의 열화특성)

  • Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.74-80
    • /
    • 2014
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from their devices and system. Especially, reliability issue of lead-free solder joint is increasing in car electronics due to ELV (End-of-Life Vehicle) banning from 2016. We have prepared engine control unit (ECU) modules soldered with Sn-40Pb and Sn-3.0Ag-0.5Cu (SAC305) solders, respectively. Degradation characteristics of solder joint strength were compared with various conditions of automobile environment such as cabin and engine room. Thermal cycle test (TC, $-40^{\circ}C$ ~ ($85^{\circ}C$ and $125^{\circ}C$), 1500 cycles) were conducted with automotive company standard. To compare shear strength degradation rate with eutectic and Pb-free solder alloy, we measured shear strength of chip components and its size from cabin and engine ECU modules. Based on the TC test results, finally, we have known the difference of degradation level with solder alloys and use environmental conditions. Solder joints degradation rate of engine room ECU is superior to cabin ECU due to large CTE (coefficient of thermal expansion) mismatch in field condition. Degradation rate of engine room ECU is 50~60% larger than cabin room electronics.

A Study on the Corrosion and Degradation of Boiler Tubes Steel in Fossil Power Plant

  • Baik, Young Min;Jeong, Hee Don;Kweon, Young Gak
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.123-128
    • /
    • 2006
  • It was analyzed the causes of boiler tube rupture due to a degradation and corrosion on the boiler tubes in fossil power plant. The experiments were carried out among samples taken from the operating facilities. The result were analyzed based on experimental results from mechanical strength, microstructure observation, and hardness measurement in order to determine the cause of local rupture on boiler tubes. In general, 2.25Cr-1Mo steel generates carbides, it is coarsened, its ductility and strength abruptly decreased as degradation is in progress, In order to confirm this phenomenon, we observed changes of the mount of Cr and Mo of carbide by carrying out EDX chemical composition analysis. The amount of Cr and Mo in the degraded material or service exposed material gradually increased the amount of Mo but initially they were almost maintained at the same amount. Furthermore, we observed that the carbide become coarsened both in the grain and at the grain boundary. Tensile test was carried out to measure a material hardness and to recognize a drop-off of hardness. Overall result for tensile strength and hardness turned out to be lower than new material and mechanical strength and hardness was degraded as the material degradation was in progress.

Effects of Oxide Growth on Mechanical Properties Degradation of Zirconium Alloys (산화막 성장이 지르코늄 합금의 기계적 물성 열화에 미치는 영향)

  • Jeon Sang-hwan;Kim Yong-soo
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.579-586
    • /
    • 2004
  • A study on the effects of oxide growth on the mechanical properties degradation of pure zirconium and Zircaloy-4 is carried out with high temperature tensile tests. It is found that the mechanical properties can deteriorate with the oxide growth less than $1\%$ of total specimen cross section, especially at $300\~400^{\circ}C$ that is zirconium alloy cladding temperature during the nuclear reactor operation. It is also revealed that Young's modulus changes little but yield strength and tensile strength drop down to $20\% and 40\%$ of the room temperature strength, respectively, in the temperature range. Fractographic analysis shows that the number of dimples decreases and fractured surface becomes smooth with increasing oxide thickness.

Strength Degradation from Contact Fatigue in Self-toughened Glass-ceramics

  • Lee, Kee Sung;Kim, Do Kyung;Woo, Sang Kuk;Han, Moon Hee
    • The Korean Journal of Ceramics
    • /
    • v.7 no.2
    • /
    • pp.63-69
    • /
    • 2001
  • We investigated strength degradations from cyclic contact fatigue in self-toughened glass-ceramics. Hertzian indentation was used to induce cyclic contact load. Dynamic fatigue was also performed with changing stress rates from 0.01 to 10000 MPa/sec. After that, strength data and fracture origins were analysed. As the number of contact cycles increased or stressing rate decreased, severe strength degradation occurred by as much as 50% because of radial cracks developed from microcrack coalescence.

  • PDF

Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.655-676
    • /
    • 2013
  • In this study, strength reduction factors and inelastic displacement ratios are investigated for SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. The effect of negative strain - hardening on the inelastic displacement and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. New equations are proposed for strength reduction factor and inelastic displacement ratio of interacting system as a function of structural period($\tilde{T}$, T) ductility (${\mu}$) and period lengthening ratio ($\tilde{T}$/T).

A Proposal of parameter Determination Method in the Residual Strength Degradation Model for the Prediction of Fatigue Life(II) (피로수명예측을 위한 잔류강도 저하모델의 파라미터 결정법 제안(II))

  • Kim, Sang-Tae;Jang, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1452-1460
    • /
    • 2001
  • A new method of parameter determination in the fatigue residual strength degradation model is proposed. The new method and minimization technique is compared experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron and graphite/epoxy laminate. It is shown that the correlation between the experimental results and the theoretical prediction on the fatigue life and residual strength distribution using the proposed method is very reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than minimization technique for the prediction of the fatigue characteristics.

An Experimental Study on the Physical Properties Model of High Strength Concrete at High Temperature (고온시 고강도 콘크리트의 물리적 특성 모델 설정에 관한 실험적 연구)

  • Kim Heung-Yaul;Seo Chee-Ho;Choi Seng-Kwan;Jeon Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.1-4
    • /
    • 2005
  • This research is to present experimental materials model of high strength concrete for prediction of fire safety of structural members based on physical properties of materials during heating up to 800$^{circ}C$. The following conclusions are drawn from this study. First of all, between 100 to 200 $^{circ}C$, the physical models of concrete such as specific heat and thermal conductivity, show visible degradation, regardless of concrete strength. Second, between 300 to 600$^{circ}C$, the physical models of the 29MPa and 49MPa concrete show degradation continually at these temperatures. Finally, beyond 600$^{circ}C$, the physical models of 49MPa strength concrete show larger degradation than 29MPa strength concrete due to rise of pore pressure and melting of the interface between aggregate and cement paste.

  • PDF