• Title/Summary/Keyword: strength criterion

Search Result 631, Processing Time 0.026 seconds

Simple Formulae for Buckling and Ultimate Strength Estimation of Plates Subjected to Water Pressure and Uniaxial Compression (수압(水壓)과 압축력(壓縮力)을 받는 평판(平板)의 좌굴(挫屈) 및 최종강도(最終强度) 추정식(推定式))

  • Jeom-K.,Paik;Chang-Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.69-80
    • /
    • 1988
  • This paper proposes simple formulae for buckling and ultimate strength estimation of plates subjected to water pressure and uniaxial compression. For the construction of a formula for elastic buckling strength estimation, parametric study for actual ship plates with varying aspect ratios and the magnitude of water pressure is carried out by means of principle of minimum potential energy. Based on the results by parametric study, a new formula is approximately expressed as a continuous function of loads and aspect ratio. On the other hand, in order to get a formula for ultimate strength estimation, in-plane stress distribution of plates is investigated through large deflection analysis and total in-plane stresses are expressed as an explicit form. By applying Mises's plasticity condition, ultimate strength criterion is then derives. In the case of plates under relatively small water pressure, the results by the proposed formulae are in good agreement compared with those by other methods and experiment. But present formula overestimates the ultimate strength in the range of large water pressure. However, actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming etc.. Therefore, it is considered that present formulae can be applied for the practical use.

  • PDF

The Effect of Specimen Size in Charpy Impact Testing (샬피 충격시험에 있어서 시험편 크기의 영향)

  • Kim, Hoon;Kim, Joo-Hark;Chi, Se-Hwan;Hong, Jun-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 1997
  • Charpy V-notch impact tests were performed on the full-, half-and third-size specimens from two ferritic SA 508 Cl. 3 steels for nuclear pressure vessel. New normalization factors were proposed to predict the upper shelf energy(USE) and the ductile-brittle transition temperature(DBTT) of full-size specimens from the measured data on sub-size specimens. The factors for the USE and the DBTT are $(Bb^2/Kt); and; (Bb/R)^1/2/, $ respectively, where B the width, b the ligament size, $K_{t}$ the elastic stress concentration factor, and R the notch root radius. These correlations successfully estimated the USE and DBTT of the full-size specimens based on sub-size specimen data. In addition, the size effects were studied to develop the correlations among absorbed energy, lateral expansion(LE) and displacement. It was also found that the LE was able to be estimated from the displacement obtained by the instrumented impact test, and that the displacement would be used as a criterion for the toughness of the steels corresponding to change in their yield strength.h.

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

A Study on Reliability Design of Fracture Mechanics Method Using FEM (유한요소법을 이용한 파괴 역학적 방법의 신뢰성설계기술에 관한 연구)

  • Baik, Seung-Yeb;Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4398-4404
    • /
    • 2015
  • Stainless steel sheets are widely used as the structural material for dynamic machine structures, These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding, For fatigue design of gas welded joints such as various type joint. It is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of gas welded joints. Thus in this paper, ${\Delta}P-N_f$ curves were obtained by fatigue tests. and, ${\Delta}P-N_f$ curves were rearranged in the ${\Delta}{\sigma}-N_f$ relation with the hot spot stresses at the gas welded joints. Using these results, the accelerated life test(ALT) is conducted. From the experiment results, an life prediction model is derived and factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

Cohesion and Internal Friction Angle of Basalts in Jeju Island (제주도 현무암의 점착력과 내부 마찰각)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.33-40
    • /
    • 2015
  • Volcanic rocks in Jeju Island indicate the differences in geological and mechanical characteristics from region to region, and have vesicular structure caused by various environmental factors. In this study, triaxial compressive strength tests were conducted for intact rocks sampled in northeastern onshore and offshore, southeastern offshore and northwestern offshore of Jeju Island. The estimated cohesion and internal friction angle from the results of triaxial compression tests were compared and analyzed with absorption, a parameter representing the vesicular properties of basalts in Jeju Island. As a result, it was found that the relationship between cohesion and absorption could be classified clearly, considering two different linear relationships in bulk specific gravity and absorption. As the absorption increases, the cohesion decreases exponentially. In addition, the internal friction angle decreases almost linearly with increasing in the absorption, regardless of the relationships in bulk specific gravity and absorption.

Comparison of Critical Tractive Forces for Application of Soil Improvement Material to Bank Revetment Work (호안 제방사면 보강을 위한 지반개량재의 한계소류력 비교)

  • Kim, You-Seong;Kim, Jae-Hong;Seo, Se-Gwan;Bhang, In-Hwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.65-73
    • /
    • 2015
  • The bank revetment work which is conducted on the slope of river bank to protect against flowing water as a geotechnical structure has been applied as an average value of critical tractive force based on domestic and international standard design. Currently, an appropriate evaluation is needed for the hydraulic stability and geotechnical behavior analysis of bank revetments because of the effects of climate change and ambiguous design criterion. This study has compared the critical tractive forces of soil improvement material and conventional materials used for the bank revetment work. Through various experiments, the shear strength of mixtures with soil improvement material was investigated by curing time and mixture ratio. It was found that the critical tractive force of the mixture obtained from a scour test is suitable to the reinforcement of the slope of river bank which has problems such as seepage erosion and scour.

Guideline for Filling Performance of Concrete for Modular LNG Storage Tanks (모듈형 LNG 저장탱크용 콘크리트 충전성능 가이드라인 제시)

  • Lee, Dong Kyu;Lee, Keon Woo;Park, Gi Joon;Kim, Sung Wook;Park, Jung Jun;Kim, Young Jin;Choi, Myoung Sung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.86-93
    • /
    • 2018
  • Recently, the use of composite steel plate concrete structural modules filled with concrete between steel plates of complex internal structure, in which a large amount of studs are installed, is increasing in order to reduce the weight and to increase workability of structures such as LNG storage tanks. However, in Korea, there is no systematic criterion for evaluating the construction performance of composite steel plate concrete structural modules. Therefore, in this study, we propose a filling guideline of concrete for composite steel plate structural module. For this purpose, high filling performance concrete with general strength range was formulated and tested for filling ability and permeability for each formulation. Rheology analysis was performed to quantitatively evaluate the flow characteristics of concrete. The reliability of $T_{500}$ and plastic viscosity was evaluated to reflect the results of each test, and a guideline for high filling concrete satisfying the reliability of 0.9 or more was derived by reflecting the results of the study on the relationship between the $T_{500}$ and plastic viscosity. Through final fill-box test, filling performance was verified and guidelines were suggested.

The Performance of Large-diameter Bored Piles and Large-section Barrettes in Decomposed Geomaterials in Hong Kong

  • Ng Charles W.W.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.334-408
    • /
    • 2006
  • In Hong Kong, large-diameter (${\ge}600mm$) bored piles and large-section excavated rectangular barrettes are commonly used to support tall buildings to resist both vertical and horizontal loads. These piles and barrettes penetrate through and may found in saprolitic soils and decomposed rocks. Generally, the design of these large bored piles and barrettes involves considerable amount of uncertainty and design parameters must usually be verified by field tests. In this paper, over 50 full-scale load tests on large-diameter bored piles and over 15 large-section of rectangular barrettes in Hong Kong are reviewed and interpreted critically, in particular the degree of mobilisation of side shear resistance using a mobilization rating (MR) factor and a displacement index (DI) for floating bored piles and barrettes and rock-socketed piles, respectively. The author was heavily involved with many of these load tests. The diameter of the bored piles tested ranges from 0.6m to 1.8m and the depth varies from 12m to 75m. Sizes of barrettes critically reviewed include $2.2m{\times}0.6m,\;2.2m{\times}0.8m,\;2.8m{\times}0.8m\;and\;2.8m{\times}1.0m$ (on plan) and the depth varies from 36m and 63m. Based on these field tests, a new failure load criterion for large-diameter bored piles and barrettes is developed and proposed. The side shear resistance of the bored piles and barrettes is quantitatively analyzed with respect to local displacements, standard penetration tests, unconfined compressive strength (UCS) for rock sockets and using the effective stress principle. In addition, the effects of construction including post-grouting, construction time, side scraping and excavation tools on side shear resistance are investigated and reported.

  • PDF

Development and Performance Evaluation of a Two-component Thin Spray-on Liner to Guarantee Its Homogeneous Qualities and to Reduce Dust (균질한 품질 확보와 분진 저감을 위한 2성분 박층 뿜칠 라이너의 개발과 성능평가)

  • Chang, Soo-Ho;Choi, Soon-Wook;Lee, Chulho;Kang, Tae-Ho;Hwang, Gwi-Sung;Kim, Jintae;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.441-453
    • /
    • 2016
  • This study aimed to develop a two-component TSL suitable for reducing dust and guaranteeing homogeneous qualities during its spraying. Its performance was evaluated by a series of laboratory and field tests. High ductility of two-component TSL prototypes resulted in increasing their elongation at break even though their tensile strengths were slightly lower than those of one-component powder TSLs. One prototype of the two-component TSLs developed in this study was verified to satisfy every criterion specified by EFNARC (2008). Especially, it increased the average compressive strength of mortar specimens by 50% even when it coated them only with the thickness of 3 mm. From a preliminary spraying test, a spraying machine suitable for the developed TSL prototype was derived and modified. After its field application, dust and rebound generated during its spraying works were found to be very minimal. Its spraying rate was recorded to be approximately $60m^2/hr$. In addition, it showed a very rapid hardening characteristic compared with general sprayable waterproofing membranes.

Optimization of Lightened Fiber-Reinforced Composite City & Trekking Bicycle Frame (섬유강화복합재료를 사용한 일반용 경량화 자전거 프레임의 최적설계)

  • Yoon, Won Sok;Kim, Do Hyung;Kim, Hak Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.147-156
    • /
    • 2016
  • In this paper, optimal designs of bicycle frame were studied for weight reduction of bicycle using carbon-fiber-reinforced plastic (CFRP), glass-fiber-reinforced plastic (GFRP) and Kevlar-fiber-reinforced plastic (KFRP), respectively. Based on the anisotropic properties of FRP material, stacking angle and thickness optimization were performed under the safety reference of European committee for standardization (CEN) to ensure the stability of bicycle frame. Finally, performances of FRP bicycle frame was evaluated by digital logic method based on the optimized results of weight, strength properties and cost. Then, the optimized bicycle frame composed of each FRPs were evaluated and ranked by total performance values.