• Title/Summary/Keyword: strength criterion

Search Result 631, Processing Time 0.03 seconds

Prediction of fracture in hub-hole expansion with a defected-edge model (결함을 가지는 모델을 이용한 허브 홀 확장에서의 파단 예측)

  • Lee Jong-Sup;Huh Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.131-134
    • /
    • 2004
  • The hub hole is usually formed with a stretch flanging process followed by a blanking process of a hole. Since the hole is made by blanking, the blanked surface is so rough that the formability in the region is rather poor. The emerging task is to identify the formability of the blanked region in the forming simulation and to relate the criterion to the real forming process by experiments. In this paper, the blanked region of a hole surface is modeled by a defected-edge finite element for stretch flanging simulation. The analysis deals with the level of defect in the blanked region in order to identify the formability in the real process. The analysis provides the formability depending on the level of defect and seeks the way to match the level of defect to that of the real surface. The approach makes the analysis possible to deal with the formability of the high strength steel and predict the fracture at the hole surface during the stretch flanging simulation.

  • PDF

Adaptation of Evidence-based Surgical Wound Care Algorithm

  • Han, Jung-Yeon;ChoiKwon, Smi
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.6
    • /
    • pp.768-779
    • /
    • 2011
  • Purpose: This study was designed to adapt a surgical wound care algorithm that is used to provide evidence-based surgical wound care in a critical care unit. Methods: This study used, the 'ADAPTE process', an international clinical practice guideline development method. The -'Bonnie Sue wound care algorithm' - was used as a draft for the new algorithm. A content validity index (CVI) targeting 135 critical care nurses was conducted. A 5-point Likert scale was applied to the CVI test using a statistical criterion of .75. Results: A surgical wound care algorithm comprised 9 components: wound assessment, infection control, necrotic tissue management, wound classification by exudates and depths, dressing selection, consideration of systemic factors, wound expected outcome, reevaluate non-healing wounds, and special treatment for non-healing wounds. All of the CVI tests were ${\leq}$.75. Compared to existing wound care guidelines, the new wound care algorithm provides precise wound assessment, reliabilities of wound care, expands applicability of wound care to critically ill patients, and provides evidence and strength of recommendations. Conclusion: The new surgical wound care algorithm will contribute to the advancement of evidence-based nursing care, and its use is expected as a nursing intervention in critical care.

Accumulation of wind induced damage on bilinear SDOF systems

  • Hong, H.P.
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.145-158
    • /
    • 2004
  • The evaluation of the accumulation of permanent set for inelastic structures due to wind action is important in establishing a criterion to select a reduced design wind load and in incorporating the beneficial ductile behaviour in wind engineering. A parametric study of the accumulation of the permanent set as well as the ductility demand for bilinear single-degree-of-freedom (SDOF) systems is presented in the present study. The dynamic analysis of the inelastic SDOF system is carried out using the method of Newmark for artificially generated time history of wind speed. Simulation results indicate that the mean of the normalized damage rate is highly dependent on the natural frequency of vibration. This mean value is relatively insensitive to the damping ratio if the damping ratio is larger than 5%. The scatter associated with the accumulation of the permanent set is very significant. The consideration of the postyield stiffness can significantly reduce the accumulation of the permanent set if the ratio of the yield strength to the expected peak response is small. The results also show that the ductility demand due to the wind action over a period of one hour for flexible structures can be much less than that for rigid structures or structures with larger damping ratio if the SDOF systems are designed with a reduced peak response caused by the fluctuating wind.

Stability Estimation Method for Pillar Considering the Reinforcement Method during Twin-Tunnel Excavation (병설터널 굴착시 필라부의 보강을 고려한 안정성 평가기법)

  • Jang, Bu-Sik;Hwang, Jung-Soon;Ryu, June-Won;Lee, Eung-Ki;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.980-987
    • /
    • 2006
  • Recently, twin-tunnel is often designed considering the aspects of disaster prevention and economic reasons. However, the design cases and the studies are relatively insufficient. By the twin-tunnel excavation, deviate stresses of pillar between tunnels are increased and the increased stresses induce the instability of the twin-tunnel. In this study, numerical analyses about the twin-tunnel behaviour are conducted while varying ground strength, width of pillar and depth of earth cover and a series of regression analyses are carried out by using the results of numerical analyses for the twin-tunnel. Based on the numerical analyses, an estimation method of derived stresses is suggested though the regression analyses. Also, based on the results of regression analyses, an quantitative estimation method considering the reinforcement effects is also suggested. Then various parametric studies are conducted to be considered the reinforcement type and various design parameters. Finally, the efficiency of the suggested method is verified through the results of parametric studies.

  • PDF

The Effect of Si Content on Important Properties of A Mo and V Free Low Alloy Cast Steel for The Insert of Cold Pressing Die (냉간 인서트 금형용 Mo, V 무첨가 저합금 주강의 주요 성질에 미치는 Si함량의 영향)

  • Shin, Je-Sik;Kim, Bong-Whan;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.70-77
    • /
    • 2009
  • The aim of this study was to develop a Mo and V free low alloy cast steel materials, enabling the significant cost- and time-savings in manufacturing and maintaining the insert of cold pressing die without impairment of the important properties. For this purpose, the effects of Si content on combinations of important properties such as hardness, hardenability, and weldability, and strength were systematically investigated. In order to evaluate the applicability as the insert of cold pressing die, the mechanical properties were measured after spheroidization annealing, quenching and tempering, and flame hardening heat treatments, respectively. After the Q/T and F.H. treatments, the developed 0.8${\sim}$1.6%Si containing Mo and V free low alloy cast steels showed excellent matrix strengthening effect, hardenability, and weldability, fulfilling the industrial criterion of the mechanical properties for automobile cold pressing die insert.

A Numerical Investigation on End Bearing Capacity of Single Pile Installed in Fractured Rock Mass (절리암반에 설치된 단말뚝기초의 선단지지력에 관한 수치해석 연구)

  • Kim, Tae-Jung;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.61-70
    • /
    • 2013
  • This paper presents the results of a two-dimensional finite element analysis of end bearing capacity of single pile installed in fractured rock mass. A number of cases were analyzed using Hoek-Brown criterion that can consider the condition of rock joints. Considering a wide range of joint conditions in which the pile is embedded into the rock, GSI was set as a main parameter. And the effects of pile diameter, unconfined compressive strength of rock and Hoek-Brown constant $m_0$ were considered. Based on parameter study, end bearing load factor graphs were suggested.

Tests of the interface between structures and filling soil of mountain area airport

  • Wu, Xueyun;Yang, Jun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.399-415
    • /
    • 2017
  • A series of direct shear tests were conducted to investigate the frictional properties of the interface between structures and the filling soil of Chongqing airport fourth stage expansion project. Two types of structures are investigated, one is low carbon steel and the other is the bedrock sampled from the site. The influence of soil water content, surface roughness and material types of structure were analyzed. The tests show that the interface friction and shear displacement curve has no softening stage and the curve shape is close to the Clough-Duncan hyperbola, while the soil is mainly shear contraction during testing. The interface frictional resistance and normal stress curve meets the Mohr-Coulomb criterion and the derived friction angle and frictional resistance of interface increase as surface roughness increases but is always lower than the internal friction angle and shear strength of soil respectively. When surface roughness is much larger than soil grain size, soil-structure interface is nearly shear surface in soil. In addition to the geometry of structural surface, the material types of structure also affects the performance of soil-structure interface. The wet interface frictional resistance will become lower than the natural one under specific conditions.

Seismic behaviour of gravity load designed flush end-plate joints

  • Cassiano, David;D'Aniello, Mario;Rebelo, Carlos
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.621-634
    • /
    • 2018
  • Flush end-plate (FEP) beam-to-column joints are commonly used for gravity load resisting parts in steel multi-storey buildings. However, in seismic resisting structures FEP joints should also provide rotation capacity consistent with the global structural displacements. The current version of EN1993-1-8 recommends a criterion aiming at controlling the thickness of the end-plate in order to avoid brittle failure of the connection, which has been developed for monotonic loading conditions assuming elastic-perfectly plastic behaviour of the connection's components in line with the theory of the component method. Hence, contrary to the design philosophy of the hierarchy of resistances implemented in EN1998-1, the over strength and the hardening of the plastic components are not directly accounted for. In light of these considerations, this paper describes and discusses the results obtained from parametric finite element simulations aiming at investigating the moment-rotation response of FEP joints under cyclic actions. The influence of bolt diameter, thickness of end-plate, number of bolt rows and shape of beam profile on the joint response is discussed and design requirements are proposed to enhance the ductility of the joints.

Development of Corrosion Defect Assessment Program for API X65 Gas Pipelines (국내가스배관 부식부위 평가프로그램의 개발)

  • Choi, Jae-Boong;Kim, Youn-Ho;Goo, Bon-Geol;Kim, Young-Jin;Kim, Young-Pyo;Baek, Jong-Hyun;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.453-458
    • /
    • 2001
  • Pipelines have the highest capacity and are the safest and the least environmentally disruptive way for gas or oil transmission. Recently, failures due to corrosion defects have become of major concern in maintaining pipeline integrity. A number of solutions have been developed for the assessment of remaining strength of corroded pipelines. However, these solutions are known to be dependent on material properties and pipeline geometries. In this paper, a Fitness-For-Purpose type limit load solution for corroded gas pipelines made of the X65 steel is proposed. For this purpose, a series of burst tests with various types of corrosion defects are performed. Finite element simulations are carried out to derive an appropriate failure criterion. And then, further, extensive finite element analyses are performed to obtain the FFP type limit load solution for corroded X65 gas pipelines as a function of defect depth, length and pipeline geometry. And also, a window based computer program far the assessment of corrosion defect, which is named as COPAP(COrroded Pipeline Assessment Program) has been developed on the basis of proposed limit load solution.

  • PDF

The Mechanical Properties of CFRC under High Temperature (CFRC 복합재료의 기계적 고온특성)

  • Song, Gwan-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.258-265
    • /
    • 2001
  • Compression and bending test have been conducted to evaluate the mechanical performance of CFRC at several different temperature up to $2000^{\circ}C$ . Tools and several grips for the test at high temperature were designed to obtain mechanical properties of CFRP. A major cause of increasing strength according to increasing the density and the temperature were analyzed. SEM method was utilized to find out the damage and the fracture mechanism. The new simple equation for the L(span length)/h(beam height) of specimens and for the failure criterion on the 4 point bending were proposed.

  • PDF