• Title/Summary/Keyword: strength characteristic

Search Result 1,456, Processing Time 0.026 seconds

Detection Properties of Irradiated Dried Fruits by Using Photo-stimulated Luminescence, Thermoluminescence, and Electronspin Resonance Methods (물리적인 방법(PSL, TL, ESR)을 이용한 방사선 조사 건조과일의 검지 특성)

  • Yoon, Young-Min;Park, Jae-Nam;Choi, Soo-Jeong;Park, Jong-Heum;Kim, Jae-Kyung;Byun, Eui-Baek;Lee, Ju-Woon;Han, In-Jun;Park, Jin-Gyu;Kim, Jae-Hun;Song, Beom-Seok
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.11-15
    • /
    • 2014
  • In this study, we investigated the applicability of the photostimulated luminescence (PSL), thermoluminescence (TL) and electron spin resonance (ESR) methods for freeze dried fruits which are not allowed to be irradiated in Korea. Apples and persimmons samples that had been dried with a freeze drier were irradiated at a dose of 1, 3, 5, 7, and 10 kGy, using a gamma radiator with a cobalt-60 source. With the PSL method, the dried apples showed photon counts of less then 700 counts/60 s (negative) in all the samples, whereas the dried persimmons that were gamma-irradiated above 3 kGy yielded photon counts of between 700 and 5,000 counts/60 s (intermediate). The TL results showed that this technique is useful for detecting irradiated samples; the TL ratios ($TL_1/TL_2$) measured for the food samples at an irradiation dose of 1 kGy were 0.13 for dried apples and 0.79 for dried persimmons. With regard to the results of ESR spectroscopy, the strength of the ESR signals from the dried fruits increased linearly in a dosedependent manner. However, the characteristic signal was not found in all the samples. In conclusion, the TL methods only can be used for the detection of gamma-irradiated dried apples and persimmons.

Fabrication of Mineral Coating for Slow-releasing Action and Characteristic (완효성을 위한 광물질 피복의 제조와 용출특성연구)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Park, Chong-Lyuck;Jeon, Ho-Seok;Choi, Jong-Myung;Kim, Lee-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.377-382
    • /
    • 2007
  • Porous mineral coating have been fabricated and applied for basic research on their slow release action to a fertilizer. Feldspar was selected as raw mineral for the coating and two different particle sizes of powder were prepared. Slow-release action was estimated by using a potassium sulfate fertilizer. Spherical pellets were prepared with a pan-type pelletizer and then screened into sizes ranging 1.4 to 2.35mm. While the fertilizer pellets were rotated in the pelletizer again, the feldspar powder and 0.5% polyvinyl alcohol solution were simultaneously sprayed on the pellets. The fertilizer pellets coated with feldspar powder were fabricated. The pellets were heated to increase their strength and screened to sort by coating thickness. Potassium releasing tests were conducted for 40 days and the performance for slow-release action was estimated as functions of the heating temperature, coating thickness and raw mineral powder size. The Burst effect caused high initial releasing rate. Releasing kinetics was proportional to concentration of potassium in pellets. The pellet that was fabricated with $27.4{\mu}m$-sized feldspar and heated at $1050^{\circ}C$ showed a releasing rate of 43% on the 40th day.

A Study on Improvement of Storage Safety through Quality improvement of Torpedo Propulsion Battery (어뢰 추진전지 품질개선을 통한 저장안정성 향상에 관한 연구)

  • Jang, Min-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.291-298
    • /
    • 2019
  • We describe the improvement of insulation performance and the prevention of electrolyte leakage in a single cell in order to prevent the fuming phenomenon caused by leakage of electrolyte in a lithium secondary battery in a submerged weapon (torpedo) operated in Korea. A torpedo using lithium secondary battery as a main power source (propulsion battery) can induce the heat and fuming phenomenon, which makes it inconvenient for naval equipment operation in Korea. In the simulation test, the electrolyte of some battery cells leaked in the battery pack unit, leading to a short circuit between the main power circuit and the terminal tab of the high voltage part. We analyzed the characteristics and mechanism of the lithium secondary battery during this heat generation and fuming phenomenon. In order to prevent leakage of the electrolyte in the lithium secondary battery, the design was improved via fundamental (terminal tap enhancement) and complementary (insulation block selection and installation) measures. Comparison of the performance test before and after the improvement showed that the tensile strength of the tap terminal was improved about 2 times and the withstand voltage characteristic was improved. The application of quality improvement measures resulted in no fuming even after more than 3 years of field operation. This result is expected to improve the operation and storage stability of the torpedo propulsion cell.

The Efficiency of Short Track-related Sports Injury Prevention Program on Non-contact Injury Incidence for Elite Short Track Speed Skaters (쇼트트랙 관련 스포츠 손상 예방프로그램이 엘리트 쇼트트랙 스피드 스케이팅 선수들의 비접촉성 손상 발생에 미치는 영향)

  • Kim, Eunkuk;Choi, Hokyung
    • 한국체육학회지인문사회과학편
    • /
    • v.58 no.2
    • /
    • pp.405-416
    • /
    • 2019
  • This study aimed to identify the efficiency of short track-related sports injury prevention program consisted of muscle strength and neuromuscular training on non-contact injury incidence and characteristics in knee and ankle joints and low back for elite short track speed skaters. Twenty-five short track athletes who belonged to G-City Team were participated in this study from Nov. 2017 to Jul. 2018. Information on their sports injuries occurred were collected and injury prevention program was applied in their warm-up every training sessions and competition. Also their symptom-level of knee and ankle joint and low back were measured by using OSTRC overuse injury questionnaire and Cumberland ankle instability(CAIT). The injury incidence rate after application of prevention program was 2.79 injuries/1,000 hour exposures(HEs), which was lower than before (3.04 injuries/1,000HEs). The OSTRC score (30.89±28.34 and 23.84±23.61, respectively) in knee and low back after application of prevention program were lower than before (58.47±26.77 and 52.36±21.55, respectively), and the CAIT score (13.47±6.07) in ankle joint after application of program was higher than before (16.26±7.28), which means that their symptom-level was alleviated with sports injury prevention program. In conclusion, the sports injury prevention program designed for short track's motion and characteristic can have positive influences on the occurrence of non-contact injury for short track speed skaters.

A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms (쉴드 TBM 데이터와 머신러닝 분류 알고리즘을 이용한 암반 분류 예측에 관한 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.494-507
    • /
    • 2021
  • With the increasing use of TBM, research has recently been conducted in Korea to analyze TBM data with machine learning techniques to predict the ground in front of TBM, predict the exchange cycle of disk cutters, and predict the advance rate of TBM. In this study, classification prediction of rock characteristics of slurry shield TBM sites was made by combining traditional rock classification techniques and machine learning techniques widely used in various fields with machine data during TBM excavation. The items of rock characteristic classification criteria were set as RQD, uniaxial compression strength, and elastic wave speed, and the rock conditions for each item were classified into three classes: class 0 (good), 1 (normal), and 2 (poor), and machine learning was performed on six class algorithms. As a result, the ensemble model showed good performance, and the LigthtGBM model, which showed excellent results in learning speed as well as learning performance, was found to be optimal in the target site ground. Using the classification model for the three rock characteristics set in this study, it is believed that it will be possible to provide rock conditions for sections where ground information is not provided, which will help during excavation work.

The Prediction of Durability Performance for Chloride Ingress in Fly Ash Concrete by Artificial Neural Network Algorithm (인공 신경망 알고리즘을 활용한 플라이애시 콘크리트의 염해 내구성능 예측)

  • Kwon, Seung-Jun;Yoon, Yong-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.127-134
    • /
    • 2022
  • In this study, RCPTs (Rapid Chloride Penetration Test) were performed for fly ash concrete with curing age of 4 ~ 6 years. The concrete mixtures were prepared with 3 levels of water to binder ratio (0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash (0 and 30%), and the improved passed charges of chloride ion behavior were quantitatively analyzed. Additionally, the results were trained through the univariate time series models consisted of GRU (Gated Recurrent Unit) algorithm and those from the models were evaluated. As the result of the RCPT, fly ash concrete showed the reduced passed charges with period and an more improved resistance to chloride penetration than OPC concrete. At the final evaluation period (6 years), fly ash concrete showed 'Very low' grade in all W/B (water to binder) ratio, however OPC concrete showed 'Moderate' grade in the condition with the highest W/B ratio (0.47). The adopted algorithm of GRU for this study can analyze time series data and has the advantage like operation efficiency. The deep learning model with 4 hidden layers was designed, and it provided a reasonable prediction results of passed charge. The deep learning model from this study has a limitation of single consideration of a univariate time series characteristic, but it is in the developing process of providing various characteristics of concrete like strength and diffusion coefficient through additional studies.

A novel approach for rice straw agricultural waste utilization: Synthesis of solid aluminosilicate matrices for cesium immobilization

  • Panasenko, A.E.;Shichalin, O.O.;Yarusova, S.B.;Ivanets, A.I.;Belov, A.A.;Dran'kov, A.N.;Azon, S.A.;Fedorets, A.N.;Buravlev, I. Yu;Mayorov, V. Yu;Shlyk, D. Kh;Buravleva, A.A.;Merkulov, E.B.;Zarubina, N.V.;Papynov, E.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3250-3259
    • /
    • 2022
  • A new approach to the use of rice straw as a difficult-to-recycle agricultural waste was proposed. Potassium aluminosilicate was obtained by spark plasma sintering as an effective material for subsequent immobilization of 137Cs into a solid-state matrix. The sorption properties of potassium aluminosilicate to 137Cs from aqueous solutions were studied. The effect of the synthesis temperature on the phase composition, microstructure, and rate of cesium leaching from samples obtained at 800-1000 ℃ and a pressure of 25 MPa was investigated. It was shown that the positive dynamics of compaction was characteristic of glass ceramics throughout the sintering. Glass ceramics RS-(K,Cs)AlSi3O8 obtained by the SPS method at 1000 ℃ for 5 min was characterized by a high density of ~2.62 g/cm3, Vickers hardness ~ 2.1 GPa, compressive strength ~231.3 MPa and the rate of cesium ions leaching of ~1.37 × 10-7 g cm-2·day-1. The proposed approach makes it possible to safe dispose of rice straw and reduce emissions into the atmosphere of microdisperse amorphous silica, which is formed during its combustion and causes respiratory diseases, including cancer. In addition, the obtained is perspective to solve the problem of recycling long-lived 137Cs radionuclides formed during the operation of nuclear power plants into solid-state matrices.

Analysis of the Present Status and Characteristics of Environmental Product Declaration of Ready-mixed Concrete (레디믹스트 콘크리트의 환경성적표지 현황 및 특성 분석)

  • Kim, Rak-Hyun;Kim, Gwang-Hyun;Park, Won-Jun;Roh, Seung-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.137-148
    • /
    • 2022
  • Recently, in the concrete industry, the development and commercialization of low-carbon products of ready-mixed concrete have emerged as part of the efforts to realize carbon neutrality. This study aims to investigate the current status of environmental product declaration(EPD) of ready-mixed concrete and to analyze the characteristics of carbon emissions by compressive strength, life cycle stage, and region. To this end, the related certification system requiring the calculation of carbon emissions in the concrete industry was analyzed. The target of analyzing the current status of carbon emissions was set as a product of ready-mixed concrete that acquired EPD certification based on the life cycle assessment method. In addition, the trend of carbon emissions according to each characteristic was reviewed by analyzing carbon emissions by the life cycle of ready-mixed concrete products, analyzing carbon emissions by standard, and analyzing carbon emissions by region. As a result, the carbon emissions in the pre-production stage were 99% compared to total carbon emissions., and as it increased from 18MPa to 40MPa, carbon emissions also increased. Even with the same specifications, the carbon emissions in the capital region were higher than in the southern region.

Numerical Analysis of Hinge Joints in Modular Structures Based on the Finite Element Analysis of Joints (접합부 유한요소해석을 바탕으로 한 모듈러 구조물의 힌지접합부 수치해석적 연구)

  • Kim, Moon-Chan;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper introduces research on the hinge joint of modular structure joints using finite element analysis. The modular structure has a characteristic in that it is difficult to expect the integrity of columns and beams between unit modules because the construction is carried out such that the modules are stacked. However, the current modular design ignores these structural characteristics, considers the moment transmission for the lateral force, and analyzes it in the same manner as the existing steel structure. Moreover, to fasten the moment bonding, bolts are fastened outside and inside the module, resulting in an unreasonable situation in which the finish is added after assembly. To consider the characteristics that are difficult to expect, such as unity, a modular structure system using hinge joints was proposed. This paper proposed and reviewed the basic theory of joints by devising a modified scissors model that is modified from the scissors model used in other research to verify the transmission of load when changing from the existing moment junction to a hinge junction. Based on the basics, the results were verified by comparing them with Midas Gen, a structural analysis program. Additionally, the member strength and usability were reviewed by changing the modular structure designed as a moment joint to a hinge joint.

Analysis of Stability and Behavior of Slope with Solar Power Facilities Considering Seepage of Rainfall (태양광 발전시설이 설치된 사면의 강우시 침투를 고려한 안정성 및 거동 분석)

  • Yu, Jeong-Yeon;Lee, Dong-Gun;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.57-67
    • /
    • 2023
  • Slope failures during rainfall have been observed in mountainous areas of South Korea as a result of the presence of solar power facilities. The seepage behavior and pore pressure distribution differ from typical slopes due to the presence of impermeable solar panels, and the load imposed by the solar power structures also affects the slope behavior. This study aims to develop a method for evaluating the stability of slopes with solar power facilities and to analyze vulnerable points by considering the maximum slope displacement. To assess the slope stability and predict behavior while considering rainfall seepage, a combined seepage analysis and finite difference method numerical analysis were employed. For the selected site, various variables were assumed, including parameters related to the Soil Water Characteristic Curve, strength parameters that satisfy the Mohr-Coulomb failure criterion, soil properties, and topographic factors such as slope angle and bedrock depth. The factors with the most significant influence on the factor of safety (FOS) were identified. The presence of solar power facilities was found to affect the seepage distribution and FOS, resulting in a decreasing trend due to rainfall seepage. The maximum displacement points were concentrated near the upper (crest) and lower (toe) sections of the slope.