• 제목/요약/키워드: strength and mass loss

검색결과 107건 처리시간 0.026초

The Mechanical Properties of High Strength Concrete in Massive Structures

  • Park, Ki-Bong
    • Architectural research
    • /
    • 제15권1호
    • /
    • pp.53-58
    • /
    • 2013
  • High strength concrete is being used increasingly in mass structure projects. The purpose of this study is to investigate the influence of temperature during mixing, placing and curing on the strength development, hydration products and pore structures of high strength concrete in mass structures. The experiments were conducted with two different model walls, viz.: 1.5 m and 0.3 m under typical summer and winter weather conditions. The final part of this study deal with the clarification of the relationship between the long-term strength loss and the microstructure of the high strength concrete at high temperatures. Test results indicated that high elevated temperatures in mass concrete structures significantly accelerate the strength development of concrete at the early ages, while the long-term strength development is decreased. The long-term strength loss is caused by the decomposition of ettringite and increased the total porosity and amount of small pores.

Effect of Brown-rotted Wood on Mechanical Properties and Ultrasonic Velocity

  • Lee, Sang-Joon;Kim, Gyu-Hyeok;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권5호
    • /
    • pp.24-32
    • /
    • 2008
  • Artificial brown-rot decay was induced to two wood species, Pinus densiflora and Pinus radiata. A modified direct inoculation method was used and the decay indicators of mass loss and two compressive mechanical properties, maximum compressive strength (MCS) and compressive stiffness, were estimated over the period of 8 weeks of fungal exposure. Measurable mass loss occurred 2 weeks after the fungal attack, with 15% to 22% of the loss occurring 8 weeks after fungal exposure with Fornitopsis palustris and Gloeophyllurn trabeurn. Mechanical properties proved to be far more sensitive than mass loss detection: approximately five to six times by quantity. Of the two mechanical properties, MCS was more sensitive to and consistent with progressive brown-rot decay. An ultrasonic test was performed to determine the feasibility and accuracy of this method for nondestructive detection of brown-rot decay. The ultrasonic test is highly sensitive at qualitative detection of the early stages of brown-rot decay.

비만 노인 여성에서 저열량식과 근력운동의 병행이 근내지방과 혈중지질에 미치는 영향 (Effects of a Hypocaloric Diet with or without Strength Training on Intermuscular Adipose Tissue Mass and Serum Lipid Concentrations in Obese Elderly Women)

  • 김재희
    • 운동영양학회지
    • /
    • 제13권1호
    • /
    • pp.9-14
    • /
    • 2009
  • The effects of a hypocaloric diet with or without strength training on body fat distribution and serum lipid concentrations in obese elderly women were investigated. Twenty-six healthy women (age 66±4.6 yr; body mass index 32.3±2.9 kg/m2) were randomly assigned to 3 groups: control (C; n=8), hypocaloric diet (DO; n=9) or hypocaloric diet with strength training (DST; n=9). Subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and inter and intra muscular adipose tissue (IMAT) were measured using magnetic resonance imaging. Serum lipid concentrations including total cholesterol (TC), high density lipoprotein cholesterol (HDLC), low density lipoprotein cholesterol (LDLC), and triglycerides (TG) were measured. No significant changes occurred in body weight and percent body fat in the C group over the 16-week period. The DO and DST groups lost similar amounts of weight and fat after 16 weeks. SAT and VAT decreased after weight loss in the DO and DST groups but not in the C group. IMAT was significantly reduced in the DO and DST groups, whereas in the C group IMAT increased. The loss in IMAT mass was similar in the DO and DST groups. TC and LDLC decreased in the DO and DST groups but not in the C group. There were no differences between the DO and DST groups in decrease in TC and LDLC. HDLC decreased in the DO group but not in the C and DST groups. TG tended to decrease in the DST group. In conclusion, body fat distribution including SAT, VAT, and IMAT and serum lipid concentratons were modulated by weight loss resulting from the hypocaloric diet with or without strength training in obese elderly women. Strength training did not enhance the improvement in body fat distribution and serum TC and LDLC concentrations by the hypocaloric diet.

재생굵은골재를 사용한 고강도 콘크리트의 동결융해 특성 (Freezing and Thawing Properties of High Strength Concrete Using Recycled Coarse Aggregate)

  • 성찬용;임상혁
    • 한국농공학회논문집
    • /
    • 제46권2호
    • /
    • pp.59-66
    • /
    • 2004
  • This study was performed to evaluate the freezing and thawing properties of the high strength concrete using recycled coarse aggregate. The recycled coarse aggregate replaced natural crushed aggregate by 0%, 25%, 50%, 75% and 100%. The compressive strength of the concrete using recycled coarse aggregate showed more than 300 kgf/$cm^2$ at the curing age 28 days. The mass loss ratio by freezing and thawing was less than 1% at all mix type. The relative dynamic modulus of elasticity was decreased with increasing the freezing and thawing cycles. Also, the durability factor by the freezing and thawing was decreased with increasing the content of recycled coarse aggregate. But, the recycled concrete except 100% recycled coarse aggregate showed 60 or more durability factor in the freezing and thawing 300 cycles. Accordingly, these recycled coarse aggregate can be used for high strength concrete.

Assessment of strength and durability of bagasse ash and Silica fume concrete

  • Singaram, Jayanthi;Kowsik, Radhika
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.801-814
    • /
    • 2016
  • An alternative type of building system with masonry units is extensively used nowadays to reduce the emission of CO2 and embodied energy. Long-term performance of such structures has become essential for sustaining the building technology. This study aims to assess the strength and durability properties of concrete prepared with unprocessed bagasse ash (BA) and silica fume (SF). A mix proportion of 1:3:3 was used to cast concrete cubes of size $100mm{\times}100mm{\times}100mm$ with various replacement levels of cement and tested. The cubes were cast with zero slump normally adopted in the manufacturing of hollow blocks. The cubes were exposed to acid attack, alkaline attack and sulphate attack to evaluate their durability. The mass loss and damages to concrete for all cases of exposures were determined at 30, 60, and 90 days, respectively. Then, the residual compressive strength for all cases was determined at the end of 90 days of durability test. The results showed that there was slight difference in mass loss before and after exposure to chemical attack in all the cases. Though the appearance was slightly different than the normal concrete the residual weight was not affected. The compressive strength of 10% bagasse ash (BA) as a replacement for cement, with 10% SF as admixture resulted in better strength than the normal concrete. Hence concrete with 10% replacement with BA along with 10% SF as admixture was considered to be durable. Besides solid concrete cubes, hollow blocks using the same concrete were casted and tested simultaneously to explore the possibility of production of masonry units.

A Study on the Application of Recycled Fine Aggregate under Sulfate Environment

  • Lee, Seung-Tae
    • 자원리싸이클링
    • /
    • 제16권2호
    • /
    • pp.17-22
    • /
    • 2007
  • The report of an investigation into the performance of mortar specimens made with recycled fine aggregate (RA) exposed to sodium sulfate solution for 360 days is presented in this paper. Mechanical properties of mortar specimens such as visual examination, compressive strength, expansion and mass loss were periodically monitored. From the test results, it was found that mortar specimens with higher replacement levels of Rh exhibited poor performance in sodium sulfate solution. However, compared to mortar specimens without RA, those with lower replacement levels of RA (up to 50% by mass) was more resistant to sulfate attack. Through the x-ray diffraction analysis, it was confirmed that the main products causing sulfate deterioration in RA mortar specimens were the formation of gypsum and thaumasite.

라디에타소나무 단판적층재의 밀도·접착·강도성능 및 내부후성 (Density, Bonding Strength, Bending strength and Decay Resistance of Radiata Pine Laminated Veneer Lumber)

  • 서진석;이동흡;황원중;오형민;박영란;강승모
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권4호
    • /
    • pp.344-350
    • /
    • 2011
  • 라디에타소나무 단판적층재(LVL)를 제조함에 있어서, CuAz 및 ACQ 방부처리와 비처리, 수성비닐우레탄 접착제와 페놀변성 리조시놀수지 접착제의 상온경화형 접착제를 적용함에 따른 밀도경사, 접착 강도성능 및 내부후성(방부효력)을 살펴보았다. 결과, LVL의 밀도경사에서 접착층 주변이 원추형으로 밀도가 커지는 경사패턴을 보였다. 접착성은 수성비닐우레탄 접착의 경우, 자비반복시험 후 전층이 박리되거나, 일부 층이 박리하고 할렬 틈새 현상이 일어났다. 페놀변성 리조시놀수지 접착제 접착의 경우, 자비반복시험 후 접착층의 응력이 큰데 연유한 굽음과 상하 접착층 사이의 단판의 수직할렬 현상이 있었으나, 접착층의 박리나 할렬이 거의 발견되지 않아 침지박리접착력은 높은 것으로 판단되었다. 한편, 방부효력시험에 있어서, 수성비닐우레탄 접착제로 적층한 LVL의 경우 갈색부후균에 의한 부후도가 백색부후균보다 크게 나타났다. 페놀변성 리조시놀수지 접착제로 LVL을 제조한 경우에는 갈색부후균에 의한 질량감소가 적었고, 약제를 처리하지 않더라도 그 피해가 낮았으며, 약제처리한 것은 질량감소율 0 수준을 보일 정도로 방부효력이 큰 것을 알 수 있었다.

고강도 콘크리트의 수화열 특성 및 발열 저감대책에 관한 연구 (Properties of Hydration Heat of High-Strength Concrete and Reduction Strategy for Heat Production)

  • 정재동;조현대;박승완
    • 한국건축시공학회지
    • /
    • 제12권2호
    • /
    • pp.203-210
    • /
    • 2012
  • 최근 국내에서는 대형 및 초고층화 건축물에 대한 관심과 수요가 증가하고 있는 추세와 함께 콘크리트의 성능이 중요시 되고 있다. 이를 뒷받침하는 기술로 매스콘크리트 및 고강도 콘크리트 시공기술의 확보는 대단히 중요하다. 고강도 콘크리트의 경우 다량의 분체량에 따른 시멘트의 수화반응(hydration) 활성으로 콘크리트 내부에 높은 온도의 수화열이 발생하고 외부와 온도차로 인한 열응력의 증가 및 그로인한 균열, 슬럼프 로스현상 등의 문제점들이 많이 발생하고 있어 대책이 필요한 실정이다. 본 연구에서는 매스콘크리트 및 고강도 콘크리트의 수화열을 제어하기 위하여 혼화재의 종류와 혼입량의 변화, 배합수를 Ice-flake로 100% 대체함으로써 고강도 콘크리트의 수화열을 저감하고자 하였으며, 실험결과 콘크리트의 수화열 저감 방안으로 혼화재는 고로슬래그와 플라이 애쉬를 사용하고 배합수로 Ice-flake를 사용함으로써 콘크리트의 유동성개선 및 슬럼프로스 저감효과를 볼 수 있으며, 콘크리트 최고 온도를 크게 떨어트려 매스 콘크리트 및 고강도 콘크리트의 수화열에 의한 균열저감 및 품질향상에 크게 기여할 것으로 판단된다.

Effect of fly ash and GGBS combination on mechanical and durability properties of GPC

  • Mallikarjuna Rao, Goriparthi;Gunneswara Rao, T.D.
    • Advances in concrete construction
    • /
    • 제5권4호
    • /
    • pp.313-330
    • /
    • 2017
  • Geopolymer is a sustainable concrete, replaces traditional cement concrete using alternative sustainable construction materials as binders and alkaline solution as alkaline activator. This paper presents the strength characteristics of geopolymer concrete (GPC) developed with fly ash and GGBS as binders, combined Sodium silicate ($Na_2SiO_3$) and Sodium Hydroxide (NaOH) solution as alkaline activators. The parameters considered in this research work are proportions of fly ash and GGBS (70-30 and 50-50), curing conditions (Outdoor curing and oven curing at $600^{\circ}C$ for 24 hours), two grades of concrete (GPC20 and GPC50). The mechanical properties such as compressive strength, split tensile strength and flexural strength along with durability characteristics were determined. For studying the durability characteristics of geopolymer concrete 5% $H_2SO_4$ solutions was used and the specimens were immersed up to an exposure period of 56 days. The main parameters considered in this study were Acid Mass Loss Factor (AMLF), Acid Strength Loss Factor (ASLF) and products of degradation. The results conclude that GPC with sufficient strength can be developed even under Outdoor curing using fly ash and GGBS combination i.e., without the need for any heat curing.

가스 터빈 블레이드 냉각 성능 향상을 위한 경사요철의 단락 효과 (An Investigation of Angled Discrete Rib-Turbulators for Cooling Enhancement of Gas Turbine Blades)

  • 우성제;이세영;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.782-789
    • /
    • 2001
  • Local heat/mass transfer and friction loss in a square duct roughened with various types of continuous and discrete rib turbulators are investigated. The combined effects of the gap flows of the discrete ribs and the secondary flows are examined for the purpose of the reduction of thermally weak regions and the promotion of the uniformity of heat/mass transfer distributions as well as the augmentation of average heat/mass transfer. The rib-to-rib pitch to the rib height ratio (p/e) of 8 and the rib angles of 90 and 60 deg are selected with $e/D_{h}=0.08$. The vortical structure of the secondary flows induced by the parallel angled arrays are quite distinct from that induced by the cross angled arrays. This distinction influences on heat/mass transfer and friction loss in all the tested cases. The gap flows of the discrete ribs reduce the strength of the secondary flows but promote local turbulence and flow mixing. As a result, the fairly uniform heat/mass transfer distributions are obtained with two row gaps.

  • PDF