• Title/Summary/Keyword: streamwise mean velocity

Search Result 77, Processing Time 0.023 seconds

COHERENT STRUCTURES IN DEVELOPING FLOW OVER A WAVY WALL (파형벽면이 있는 채널 유동의 응집 구조 연구)

  • Chang, Kyoung-Sik
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • The present study focuses on the case of developing flow with in a channel containing a long array of sinusoidal waves (2a/${\lambda}$=0.1, ${\lambda}$=h, ${\lambda}$ is the wavelength, 2a is the wave height, h is the mean channel depth) at the bottom wall. The Reynolds number defined with channel height, h and the mean velocity, U, is Re=6,700. The channel is sufficiently long such that transition is completed and the flow is fully developed over the downstream half of the channel. For the case of an incoming steady flow with no resolved turbulence, the instantaneous flow fields in the transition region are characterized by the formation of arrays of highly-organized large-scale hairpin vortices whose dimensions scale with that of the roughness elements. The paper explains the mechanism for the formation of these arrays of hairpin vortices and shows these eddies play the primary role in the formation of the large-scale streaks of high and low velocity over the wavy wall region. The presence of resolved turbulence in the incoming flow, reduces the streamwise distance needed for the streaks to develop over the wavy region, but does not affect qualitatively the transition process. In the fully-developed region, isolated and trains of large-scale hairpins play an important role in the dynamics of the streaks over the wavy wall.

An Experimental Study on a Flowfield Characteristics in a Throttle Valve of SI Engine (SI 엔진의 스로틀 밸브에서 유동장 특성에 대한 실험해석)

  • Kim, Sungcho;Kim, Cheol;Choi, Jonggeun;Lee, Seokjeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.967-974
    • /
    • 2001
  • Experimental investigations on the flow characteristics of downstream region of a butterfly valve, which is used in SI engine, have been conducted according to Reynolds number and valve angle. Measurement programs of the flowfield using x-type of hotwire anemometry include the mean and fluctuating velocity, turbulnet intensity, shear stress, power spectrum and pressure loss coefficient. Experimental results show that flow characteristics and independent of relatively high Reynolds number; 60,000 and 80,000. It is also seen that streamwise mean velocities have relatively large velocity gradient around the butterfly valve with increasing the valve opening angle and this trend appears even in the far downstream region. The distributions of turbulent intensity and shear stress show irregular behavior regardless of the valve opening angle and those of the case of the valve opening angle of 45°are the largest. The pressure loss coefficient of the body surface of the throttle valve increases mildly with the increase of Reynolds number and increases rapidly with the reduction of the valve opening angle.

Flow Control of Turbulent Wake Behind a Circular Cylinder Using a Self-adjusting Rod (자율 제어봉을 이용한 실린더 후류의 유동제어에 관한 연구)

  • Lim Hee Chang;Kam Dong Hyuk;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.467-470
    • /
    • 2002
  • The offects of a small control rod (d=3mm) located near a main circular cylinder on the drag reduction and wake structure modification were investigated. The location of the small control rod mounted on a rod-like spring is self-adjusting according to the wake structure far optimal control of the flow around the main cylinder. The experiments were carried out at the Reynolds numbers based on the cylinder diameter (D=50mm) in the range $Re_{D}=1{\times}10^4{\~}6{\times}10^4$. Mean velocity and turbulent statistics were measured with varying the angle along the cylinder circumference ${\Theta}=15^{\circ},\;30^{\circ},\;45^{\circ}$ and the distance between the main and control rods L =0.7, 1. Compared with the bare cylinder, the main circular cylinder with the fixed and self-adjusting rods reduced drag coefficient by $10{\%}$ at the angle of ${\Theta}=45^{\circ}$. For the main cylinder with self-adjusting rot as the Reynolds numbers increase, the streamwise mean velocity is increased, however, the turbulence intensity is decreased. In addition, the control rods tested in this study are effective at higher Reynolds number than at lower Reynolds number.

  • PDF

Heat Transfer Enhancement in Channel Flow by a Streamwise-Periodic Array of Rotating Circular Cylinders (주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동의 열전달 증진)

  • Jeong, Taekyeong;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.999-1008
    • /
    • 2014
  • In this study, we consider the heat transfer characteristics of channel flow in the presence of an infinite streamwise array of equispaced identical rotating circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall for some selected angular speeds. The presence of the rotating circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

Experimental Study on the Horseshoe Vortex Systems Around Surface-Mounted Obstacles (평판 위에 부착된 실린더 주위의 말굽와류 시스템에 관한 실험적 연구)

  • 양준모;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1979-1989
    • /
    • 1992
  • An experimental study has been performed to investigate the horseshoe vortex system formed around cylindrical obstacles mounted vertically on the surface over which a boundary layer is formed. To measure the mean velocity of the flow field, a five-hole Pitot tube has been used. In addition, surface static pressure measurements and surface flow visualization were also performed. From the five-hole probe measurements, vorticity distribution was deduced numerically and the streamwise velocity distribution was also examined. To consider the effect of the leading-edge shape on the formation of the horseshoe vortex, a qualitative comparison was made between the three-dimensional flows around a circular cylinder and a wedge-type cylinder. The five-hole probe measurements showed a single primary vortex which exists immediately upstream of the obstacles, and endwall flow visualization showed the existence of a corner vortex. As the vortex passes around the obstacle, the vortex strength is reduced and the vortex core moves radially outward. Due to this horseshoe vortex, the fluid momentum is found to decrease along the streamwise direction. Since the horseshoe vortex formed around a wedge-type cylinder has weaker strength and is confined to a narrower region than that around a circular, the possibility that the secondary flow loss due to the horseshoe vortex can be reduced through a change of the leading- edge shape is proposed.

The Flow Characteristics with Variation of Nozzle-to-nozzle Angles on Unventilated Dual Jests (이중제트에서 노즐과 노즐사이의 각도 변화에 따른 유동 특성)

  • Kim, Dong-Keon;Kim, Moon-Kyoung;Yoon, Soon-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1231-1239
    • /
    • 2008
  • The characteristics of flow on unventilated dual jets was experimentally investigated. The two nozzles each with an aspect ratio of 20 were separated by 6 nozzle widths. Reynolds number based on nozzle width was set to 5,000 by nozzle exit velocity. All measurements were made over a range of nozzle-to-nozzle angles from $0^{\circ}$ to $25^{\circ}$. The particle image velocimetry and pressure transducer were employed to measure turbulent velocity components and mean static pressure, respectively. It was shown that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plated. As nozzle-to-nozzle inclined angles were decreased, it was found that the spanwise turbulent intensity is greater than the streamwise turbulent intensity in the merging region. In the combined region, the velocity of dual jets agree well with that of single jet, but the turbulence intensity of dual jets not agree with that of single jet.

LDA Measurements on the Turbulent Flow Characteristics of a Small-Sized Axial Fan (소형 축류홴의 난류유동 특성치에 대한 LDA 측정)

  • Kim, Jang-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.371-376
    • /
    • 2001
  • The operating point of a small-sized axial fan for refrigerator is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the four operating points such as $\varphi=0.1$, 0.18, 0.25 and 0.32 by using fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSA's, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is utilized for supplying particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that both the streamwise and the tangential components exist predominantly in downstream except $\varphi=0.1$ and have a maximum value at the radial distance ratio of about 0.8, but the radial component, which its velocity is relatively small, is acting role that only turns flow direction to the outside or the central part of axial fan. Moreover, all of the velocity components downstream at $\varphi=0.1$ show much smaller than those upstream due to the static pressure rise at the low-flowrate region.

  • PDF

Direct Numerical and Large Eddy Simulations of Transitional Flows around Turbulence Stimulators at Very Low Speeds (초저속 영역에서 난류 촉진기 주위 천이 유동의 직접 수치 및 대형 와 모사)

  • Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.265-273
    • /
    • 2018
  • Direct numerical and large eddy simulations of transitional flows around studs installed on flat plate and bulbous bow have been performed to investigate an effectiveness of turbulence stimulators on laminar-to-turbulence transition at a very low speed. The flow velocity was determined to be 0.366m/s corresponding to 4 knots of full-scale ship speed when the objective ship was Kriso container ship. The spatial evolution of skin friction coefficient disclosed that a fully development of turbulence was observed behind the second stud installed on flat plate while a rapid transition from laminar to turbulence gave rise to the fully development of turbulence behind the first stud installed on bulbous bow. A comparison of streamwise mean velocity profiles showed that the viscous sublayer and log-layer were in good agreement with previous results although the friction velocity of Smagrosinsky sub-grid scale model was about 10% larger than that of direct numerical simulation. While the turbulence intensities of bulbous bow was similar to those of flat plate in inner region, larger intensities of turbulence were observed in outer region of bulbous bow than those of flat plate.

LARGE EDDY SIMULATION OF FULLY TURBULENT WAVY CHANNEL FLOW USING RESIDUAL-BASED VARIATIONAL MULTI-SCALE METHOD (변분다중스케일법을 이용한 파형벽면이 있는 채널 난류 유동의 대와류모사)

  • Chang, Kyoung-Sik;Yoon, Bum-Sang;Lee, Joo-Sung
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • Turbulent flows with wavy wall are simulated using Residual-based Variational Multiscale Method (RB-VMS) which is proposed by Bazilves et al(2007) as new Large Eddy Simulation methodology. Incompressible Navier-Stokes equations are integrated using Isogeometric analysis which adopt the basis function as NURBS. The Reynolds number is 6760 based on the bulk velocity and averaged channel height. And the amplitude (${\alpha}/{\lambda}$) of wavy wall is 0.05. The computational domain is $2{\lambda}{\times}1.05{\lambda}{\times}{\lambda}$ in the streamwise, wall normal and spanwise direction. Mean quantities and turbulent statistics near wavy wall are compared with DNS results of Cherukat et al.(1998). The predicted results show good agreement with reference data.

Turbulent boundary layer control via electro-magnetic forces (전자기력을 이용한 난류경계층 제어)

  • Lee J.-H.;Sung H, J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.166-171
    • /
    • 2004
  • Direct numerical simulations are peformed to investigate the physics of a spatially developing turbulent boundary layer flow suddenly subjected to spanwise oscillating electro-magnetic forces in the near-wall region. The Reynolds number based on the inlet momentum thickness and free-stream velocity is $Re_\theta=300$. A fully-implicit fractional step method is employed to simulate the flow. The mean flow properties and the Reynolds stresses are obtained to analyze the near-wall turbulent structure. It is found that skin-friction and turbulent kinetic energy can be reduced by the electro-magnetic forces. Instantaneous flow visualization techniques are used to observe the response of streamwise vortices to spanwise oscillating forces. The near-wall vortical structures are clearly affected by spanwise oscillating electro-magnetic forces.

  • PDF