• Title/Summary/Keyword: streamflow evaluation

Search Result 82, Processing Time 0.028 seconds

Evaluation of stream depletion from groundwater pumping in shallow aquifer using the Hunt's analytical solution (Hunt 해석해를 이용한 천부대수층 지하수 양수로 인한 하천수 감소 영향 분석)

  • Lee, Jeongwoo;Chung, Il Moon;Kim, Nam Won;Hong, Sung Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.923-930
    • /
    • 2016
  • This study was to evaluate the stream depletion from groundwater pumping in shallow aquifer using the Hunt's analytical solution (2009) which considers a two-layer leaky aquifer-stream system. From the total 2,187 cases of simulations with combinations of various aquifer and stream properties, the streamflow depletion rates divided by the groundwater pumping rate showed the low values when the stream depletion factor (SDF) is higher than 1,000-10,000, and was more sensitive to the aquitard hydraulic conductivity than the streambed hydraulic conductivity. The comparison of the Hunt's solution (2009) with the Hunt's solution (1999) of a single layer aquifer indicated that the maximum difference between the dimensionless stream depletions calculated by using both solutions is above 0.3, and the stream depletion is significantly affected by the hydraulic properties of the $2^{nd}$ layer as the SDF of the first layer increases. The Hunt's solution (2009) was applied to the real shallow groundwater well that is located in Chunju-Si, and the results revealed that the groundwater pumping has significant effects on streamflow in a short period of time, showing that the dimensionless stream depletion exceeds 0.8 within a few days. It was also found that the shallow groundwater pumping effects on stream depletion are highly dependent on the stream-well distance for the locations with high hydraulic diffusivity of $1^{st}$ layer and low vertical leakance between $1^{st}$ and $2^{nd}$ layers.

Groundwater evaluation in the Bokha watershed of the Namhan River using SWAT-MODFLOW (SWAT-MODFLOW를 활용한 남한강 복하천유역의 지하수 모의 평가)

  • Han, Daeyoung;Lee, Jiwan;Jang, Wonjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.985-997
    • /
    • 2020
  • SWAT (Soil and Water Assessment Tool)-MODFLOW (Modular Groundwater Flow) is a coupled model that linking semi-distributed watershed hydrology with fully-distributed groundwater behavior. In this study, the groundwater simulation results of SWAT and SWAT-MODFLOW were compared for Bokhacheon watershed in Namhan river basin. The models were calibrated and validated with 9 years (2009~2017) daily streamflow (Q) data of Heungcheon (HC) water level gauge station and the daily groundwater level observation data of Yulheon (YH). For SWAT, the groundwater parameters of GW_DELAY, GWQMN, and ALPHA_BF affecting baseflow and recession phase were treated. The SWAT results showed the coefficient of determination (R2) of 0.7 and Nash-Sutcliffe model efficiencies (NESQ, NSEinQ) for Q and 1/Q with 0.73 and -0.1 respectively. For SWAT-MODFLOW, the spatio-temporal aquifer hydraulic conductivity (K, m/day), specific storage (Ss, 1/m), and specific yield (Sy) were applied. The SWAT-MODFLOW showed R2, NSEQ, and NSEinQ of 0.69, 0.74, and 0.51 respectively. The SWAT-MODFLOW considerably enhanced the low flow simulation with the help of aquifer physical information. The total streamflow of SWAT and SWAT-MODFLOW were 718.6 mm and 854.9 mm occupying baseflow of 342.9 mm and 423.5 mm respectively.

Evaluation of Forest Watershed Hydro-Ecology using Measured Data and RHESSys Model -For the Seolmacheon Catchment- (관측자료와 RHESSys 모형을 이용한 산림유역의 생태수문 적용성 평가 -설마천유역을 대상으로-)

  • Shin, Hyung Jin;Park, Min Ji;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1293-1307
    • /
    • 2012
  • This study is to evaluate the RHESSys (Regional Hydro-Ecological Simulation System) simulated streamflow (Q), evapotranspiration (ET), soil moisture (SM), gross primary productivity (GPP) and photosynthetic productivity (PSNnet) with the measured data. The RHESSys is a hydro-ecological model designed to simulate integrated water, carbon, and nutrient cycling and transport over spatially variable terrain. A 8.5 $km^2$ Seolma-cheon catchment located in the northwest of South Korea was adopted. The catchment covers 90.0% forest and the dominant soil is sandy loam. The model was calibrated with 2 years (2007-2008) daily Q at the watershed outlet and MODIS (Moderate Resolution Imaging Spectroradiometer) GPP, PSNnet and 3 year (2007~2009) daily ET data measured at flux tower using the eddy-covariance technique. The coefficient of determination ($R^2$) and the Nash-Sutcliffe model efficiency (ME) for Q were 0.74 and 0.63, and the average $R^2$ for ET and GPP were 0.54 and 0.93 respectively. The model was validated with 1 year (2009) Q and GPP. The $R^2$ and the ME for Q were 0.92 and 0.84, the $R^2$ for GPP were 0.93.

Development of a Grid-based Daily Watershed Runoff Model and the Evaluation of Its Applicability (분포형 유역 일유출 모형의 개발 및 적용성 검토)

  • Hong, Woo-Yong;Park, Geun-Ae;Jeong, In-Kyun;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.459-469
    • /
    • 2010
  • This study is to develop a grid-based daily runoff model considering seasonal vegetation canopy condition. The model simulates the temporal and spatial variation of runoff components (surface, interflow, and baseflow), evapotranspiration (ET) and soil moisture contents of each grid element. The model is composed of three main modules of runoff, ET, and soil moisture. The total runoff was simulated by using soil water storage capacity of the day, and was allocated by introducing recession curves of each runoff component. The ET was calculated by Penman-Monteith method considering MODIS leaf area index (LAI). The daily soil moisture was routed by soil water balance equation. The model was evaluated for 930 $km^2$ Yongdam watershed. The model uses 1 km spatial data on landuse, soil, boundary, MODIS LAI. The daily weather data was built using IDW method (2000-2008). Model calibration was carried out to compare with the observed streamflow at the watershed outlet. The Nash-Sutcliffe model efficiency was 0.78~0.93. The watershed soil moisture was sensitive to precipitation and soil texture, consequently affected the streamflow, and the evapotranspiration responded to landuse type.

Development of Desktop-Based LDC Evaluation System for Effectiveness TMDLs (효과적인 오염총량관리를 위한 데스크탑 기반의 LDC 평가 시스템 개발)

  • Ryu, Jichul;Hwang, Ha-Sun;Lee, Sung-Jun;Kim, Eun Kyoung;Kim, Yong Seok;Kum, Donghyuk;Lim, Kyoung Jae;Jung, Younghun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • Load Duration Curve (LDC) can be used as a method for load management of point and non-point pollution source because the LDC easily assesses the water quality corresponding to hydrological changes in a watershed. Recently, the application of LDC to total pollution load management is a growing interest in Korea. In this regard, A desktop-based LDC assessment system was developed in this study to provide convenience to users in water quality evaluation. The developed system can simply produce the LDC by using streamflow and water quality data involved in its database. Also, The system can quantitatively inform the success or failure of the achievement for a target water quality at monthly scale. Furthermore, seasonal water quality and point/non-point pollution load in a watershed can be estimated by this system. We expect that the developed system will contribute to establish local and national policies regarding water management and total pollution load management because of its advantages such as the pollution tracking investigation and the analysis of water quality and pollution loading amount in an ungauged watershed.

A Study on a Quantitative Method in Estimating Forest Effects for Streamflow Regulation (II) - Mainly Dealing with Application of Coefficient for Slope Roughness - (삼림이수기능(森林理水機能)의 정량적(定量的) 평가방법(平價方法)에 관한 연구(硏究)(II) - 조도계수(粗度係數)의 응용(應用)을 중심(中心)으로 -)

  • Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.337-345
    • /
    • 1992
  • In this research, a kinematic wave model was applied for the runoff analysis, Regulation of streamflow was estimated by the calibration of roughness coefficient as a parameter. The data analyzed were obtained from Ananomiya and Shirasaka experimental basins at Tokyo University Forest in Aichi. Estimation methods and characteristics of roughness coefficient as a evaluation method of hydrological function of forest are summarized as follows ; 1. Roughness coefficient($N_s$) indicates the resistance of hillslope to the flowing water of surface runoff. There exists an hypothesis that resistance of hillslope to flowing water increase with the growth forest and development of the $A_o$ layer. 2. Roughness coefficient($N_s$) was estimated by the parameter when the stream direct runoff was calculated by using the kinematic wave. 3. Secular change of '$N_s$' in ananomiya has a curve which has an upper limit and increases exponentially near the limit. The curve quickly increased from 1935 to 1945 when results of afforestation for erosion control were thought to be effective. On the other hand, slight increase of '$N_s$' in Shirasaka indicates that there was not such a big change in the surface of soil layer. 4. The increase of '$N_s$' was related with decrease of direct runoff and increase of base flow. It was recognized that the rate of direct runoff decreased with the improvement of forest physiognomy and the rate of base flow was increased. But absolute value of water runoff per one storm decreased in chronological order.

  • PDF

Evaluation of applicability of linkage modeling using PHABSIM and SWAT (PHABSIM과 SWAT을 이용한 연계모델링 적용성 평가)

  • Kim, Yongwon;Byeon, Sangdon;Park, Jinseok;Woo, Soyoung;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.819-833
    • /
    • 2021
  • This study is to evaluate applicability of linkage modeling using PHABSIM (Physical Habitat Simulation System) and SWAT (Soil and Water Assessment Tool) and to estimate ecological flow for target fishes of Andong downstream (4,565.7 km2). The SWAT was established considering 2 multi purpose dam (ADD, IHD) and 1 streamflow gauging station (GD). The SWAT was calibrated and validated with 9 years (2012 ~ 2020) data of 1 stream (GD) and 2 multi-purpose dam (ADD, IHD). For streamflow and dam inflows (GD, ADD and IHD), R2, NSE and RMSE were 0.52 ~ 0.74, 0.48 ~ 0.71, and 0.92 ~ 2.51 mm/day respectively. As a result of flow duration analysis for 9 years (2012 ~ 2020) using calibrated streamflow, the average Q185 and Q275 were 36.5 m3/sec (-1.4%) and 23.8 m3/sec (0%) respectively compared with the observed flow duration and were applied to flow boundary condition of PHABSIM. The target stream was selected as the 410 m section where GD is located, and stream cross-section and hydraulic factors were constructed based on Nakdong River Basic Plan Report and HEC-RAS. The dominant species of the target stream was Zacco platypus and the sub-dominant species was Puntungia herzi Herzenstein, and the HSI (Habitat Suitability Index) of target species was collected through references research. As the result of PHABSIM water level and velocity simulation, error of Q185 and Q275 were analyzed -0.12 m, +0.00 m and +0.06 m/s, +0.09 m/s respectively. The average WUA (Weighted Usable Area) and ecological flow of Zacco platypus and Puntungia herzi Herzenstein were evaluated 76,817.0 m2/1000m, 20.0 m3/sec and 46,628.6 m2/1000m, 9.0 m3/sec. This results indicated Zacco platypus is more adaptable to target stream than Puntungia herzi Herzenstein.

Evaluation of SWAT2000 Model Application for Estimating Delivered Nutrients Load for the Gap Stream Watershed (갑천유역의 영양염류 유달부하량 산정을 위한 SWAT2000 모형의 적용성 평가)

  • Moon, Jong-Pil;Kim, Tai-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.89-100
    • /
    • 2006
  • In order to estimate delivered nutrients load from non-point sources in the Gap stream watershed in Daejeon, a distributed watershed model SWAT2000 was used so that it could predict the impact of land management practices on water, sediments and chemicals yields in large complex watersheds with varing soils, land uses and management condition over long period of time. The SWAT2000 was applied to the Daejeon (Indong), Yudeung (Boksu) and Gap (Hoeduck) streams for TMDL (Total Maximum Daily Load) of nutrients. The observed water quality and streamflow data of the year of 2002 and 2003 were used for calibration, and those of the year 2004 and 2005 were used for validation. Simulated results were evaluated by Estimation Efficiency Analysis (COE), Regression Analysis $(R^2)$ and Relative Error (R.E.) for the nutrients amounts on the monthly and yearly basis by comparing observed load with estimated load obtained by using SWAT2000 simulations. The COE value fur T-N was ranged from 0.59 to 0.78, $R^2$ values for T-N ranged from 0.65 to 0.84, and R.E values fur T-N load ranged from 4% to 20%. COE value far T-N was ranged from 0.59 to 0.73, $R^2$ values for T-P ranged from 0.67 to 0.82, and R.E values for T-P load ranged from 3% to 25%. Estimated results of SWAT2000 simulation for 3 sites (Indong, Boksu, Hoedeok) were reasonably satisfactory. This study indicated that SWAT2000 model could be applicable to estimate the nutrients load from the Gap stream watershed in Korea.

Evaluation of SWAT Prediction Error according to Accuracy of Land Cover Map (토지피복도 정확도에 따른 SWAT 예측 오류 평가)

  • Heo, Sunggu;Kim, Kisung;Kim, Namwon;Ahn, Jaehun;Park, Sanghun;Yoo, Dongseon;Choi, JoongDae;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.690-700
    • /
    • 2008
  • The Soil and Water Assessment Tool (SWAT) model users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. With newly prepared landcover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

Discharge Computation in Natural Rivers Using Chiu's Velocity Distribution and Estimation of Maximum Velocity (자연하천에서 Chiu의 유속분포와 최대유속 추정을 이용한 유량산정)

  • Kim, Chang-Wan;Lee, Min-Ho;Yoo, Dong-Hoon;Jung, Sung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.6
    • /
    • pp.575-585
    • /
    • 2008
  • It is essential to obtain accurate and highly reliable streamflow data for water resources planning, evaluation and management as well as design of hydraulic structures. A new discharge computation method proposed in this research uses Chiu's velocity distribution and estimation of maximum velocity. This method shows acceptable channel discharges comparing these by the exiting velocity-area method. When velocity-area method is used, it is required to observe velocities at every specified point and vertical line using a velocity meter like Price-AA. If the method proposed in this research, is used, however it is not necessary to observe all point velocities needed in the velocity-area method. But this method can not be applied for the cases of very complex and strongly asymmetric channel cross-sections because Chiu's velocity distribution using entropy concept may be quite biased from that of natural rivers.