• Title/Summary/Keyword: stream hydraulic characteristics

Search Result 150, Processing Time 0.026 seconds

Hydraulic Characteristic Analysis for Prevention of River Disaster at Estuary in the Eastern Coast of Korea (동해안 하천 하구부의 하천재해 방지를 위한 수리특성 분석)

  • Choi, Jong-Ho;Jun, Kye-Won;Yoon, Yong-Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • The significant sedimentation at the estuary in the eastern coast of Korea frequently causes river mouth occlusion where disconnection between the river and sea is observed. River mouth occlusion causing watershed retention raises the environmental risk of the area as it impairs water quality and threatens the area's safety in the event of floods. This study proposes a plan to maintain stability of river channel and flow of flood discharge at the estuary with loss of its function for disaster prevention. To this end, the study tries to change the location and width of stream path, focusing on the center line of stream near the sand bar of river mouth. This allows to identify a shape of stream path that leads the most stable flow. To review the result, this study uses the SRH-2D, a model for two-dimensional hydraulic analysis, and conduct numeric simulation. The simulation result showed that the most effective plan for maintaining the stable flow of running water without having the area sensitive to changes in hydraulic characteristics is to lower the overall river bed height of the sand bar near the center line of stream to a equal level.

Impact Assessment on the Change of Thermal Environment, According to the Hydraulic Characteristic Urban Regeneration Stream: Cheonggyecheon Case Study (도심재생하천 내 수리적 특성이 열환경 변화에 미치는 영향 평가: 청계천을 대상으로)

  • Kim, Jeong-Ho;Lee, Ju-Seung;Yoon, Yong-Han
    • Journal of Environmental Policy
    • /
    • v.14 no.2
    • /
    • pp.3-25
    • /
    • 2015
  • Our goal is to verify how changes in water's hydraulic characteristics after urban regeneration stream can affect any possible transformation of its thermal environment. To that end, we analyzed changes in numerous physical characteristics the subject stream along with the meteorological factors and thermal environment affected by it. Cheonggyecheon was selected as our subject as it is a great example of successful urban regeneration stream. As for physical characteristics, we allocated Type I (0.0%) and Type II (20.2%), depending on the green coverage ratio. As for numerical characteristics, at the point of Ba in which the riffle ends, the water temperature fell by $0.2^{\circ}C$ and the flow increased from 0.7m/s to 0.9 m/s with the dissolved oxygen increasing from 0.5mg/L to 0.6mg/L. As for meteorological factors surrounding the subject stream, the temperature dropped from $1.1^{\circ}C$ to $1.4^{\circ}C$ on average and relative humidity increased from 6.6% to 8.7%. Furthermore, there was an irregular change in wind velocity. According to the result of the Wet Bulb Globe Temperature (WBGT), the change in the values of Type I and II inside and on the surface of the subject stream was negligible. The downstream temperature in Type I fell from $0.3^{\circ}C$ to $0.6^{\circ}C$ and by $0.8^{\circ}C$ in Type II. As for vertical cooling effect, the change of water level was 120cm in Type I and 140cm in Type II. As for horizontal cooling effects, the value of Type I was increased from the point of Ba where the riffle ends and the value of Type II was on a steady decline.

  • PDF

A Study on the Flow Characteristics in Urban Stream Using 3-D Numerical Model (3차원 수치모형을 이용한 도시하천의 흐름특성에 관한 연구)

  • Yoon, Sun-Kwon;Kim, Jong-Suk;Moon, Young-Il;Lee, Il-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1287-1292
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze 1D or 2D stream flow that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed 3D numerical analysis for correct stream flow interpretation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimenson RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as ${\kappa}-{\varepsilon}$, RNG ${\kappa}-{\varepsilon}$ and LES. Those numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows around the piers at Jangwall bridge in urbarn stream.

  • PDF

Simulation of River Bed Change using GSTARS model (GSTARS 모형을 이용한 하상변동 모의)

  • Ahn, Sang-Jin;Yoon, Seok-Hwan;Yeon, In-Sung;Kwark, Hyun-Gu
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.297-300
    • /
    • 2002
  • Semi-two dimension numerical models were applied to study on the hydraulic and sedimentologic characteristics of upstream and downstream channel section in Dal stream. The feature of this paper is (1) to analyse the effects of bed changes by sediment transport formulas, (2) to analyse the effects of bed changes by stream tube. The simulation results of Meyer-peter and Muller formula for long-term bed changes are good when compared to the measured data.

  • PDF

Analysis of Hydrodynamic Characteristics Apply to Nature-Friendly Stream Protection Method (자연형 호안공법을 적용한 소하천의 수리특성 분석)

  • Lee, Gang-Seuk;Park, Jong-Hwa;Yeon, Kyu-Bang
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.71-81
    • /
    • 2010
  • Stream Pilot Project, which began in May 2003 and finished in December 2003, was selected to develop effective methods applicable to nature-like streams. Stream restoration projects aim to maintain or increase ecosystem goods and services while protecting downstream and coastal ecosystems. Fields environmental monitoring such as flow discharge and precipitation were conducted along the Idong stream for amount of channel zone change in 2007. This study selected three monitoring positions to measure the water level and discharge of flowing water. A stage-discharge relation is obtained from direct discharge measurements for three stations by fitting an empirical relationship to the data set. Since discharge measures are made only for low flow conditions, a curve of discharge against stage can then be built by fitting these data with a power curve. And this study used data obtained from floodmark checkup as well as HEC-RAS model to analyze the hydrodynamic characteristics of monitoring sites. Reach-averaged hydraulic parameters for the supply reach were calculated from the small area's HEC-RAS model for Idong stream, and a HEC-RAS model used to analyze hydraulics for a period in 2007, after the stream was considered bank stabilization.

  • PDF

A Study on Hydraulic Analysis using GIS-based RMA-2 and HEC-1 - For Stream Reach between Gongdo and Pyeongtaek Water Level Gauge Stations - (GIS 기반의 하천흐름해석모형 RMA-2와 유역유출모형 HEC-1을 이용한 하천의 수리학적 특성 분석 연구 - 공도·평택 수위관측소 구간을 대상으로 -)

  • Park, Min-Ji;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.124-135
    • /
    • 2007
  • The purpose of this study is to analyze the hydraulic behavior in a stream reach using SMS RMA-2 model with a series of dynamic boundary conditions of main stream and lateral flows simulated by WMS HEC-1 program. For the stream reach (10.5 km) between Gongdo and Pyeongtaek water level gauge stations of Anseongcheon, the model simulated two dimensional flow characteristics by applying dynamic flow conditions of rainfall frequencies of 50, 100, 500, and 1,000 years for the main stream and three tributaries. The temporal flow behavior successfully simulated and the results showed that the distribution of mean velocity and water level within the stream reach increased according to the increase of flow frequency. Especially, the flow velocity sensibly increased at the near downstream of lateral inflow as the width of main stream is narrower.

  • PDF

Characteristics of Vortex Structure and Its Shear Velocity in a Scour Hole

  • 김진홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.E
    • /
    • pp.45-59
    • /
    • 1992
  • At downstream part of the hydraulic structures such as spiliway or drainage gate, jet flow can occur by gate opening. If stream bed is not hard or bed protection is not sufficient, scour hole will be formed due to high shear stress of the jet flow. We call this primary scour. Once the scour hole is formed, a vortex occurs in it and this vortex causes additional scour. We call this secondary scour. The primary scour proceeds to downstream together with flow direction but the secondary one proceeds to upstream direction opposite to it. If the secondary one continues and reaches to the hydraulic structure, it can undermine the bottom of hydraulic structure and this will lead to failure of structure itself. Thus, it is necessary to know the physical features of the vortex structure in a scour hole, which is the main mechanism of the secondary scour. This study deals with the characteristics of the vortex structure and its shear stress which causes the secondary scour.

  • PDF

Analysis of Intercepted Flow Characteristics by Accumulated Debris (부유잡목에 의한 흐름차단이 하천에 미치는 영향 분석)

  • Choi, Gye-Woon;Kim, Young-Gyu;Hwang, Young-Man;Cho, Sang-Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.846-850
    • /
    • 2007
  • In this study debris like branch or trash are washed and flowed from land to stream by rainfall runoff at mountain or urban stream specially rainy season. These kinds of debris are accumulated at hydraulic construct on the way of flow along the stream. The shape or ratio of like these accumulated debris are various according to the location where it is accumulated and the material what it is, so that it is influenced to be varied to flow characteristics. To be simple of accumulated debris shape, it was made experiments though the variation of open ratio and the shape of accumulated debris by lab experiment using straight channel with two piers. From the result, the water level is inverse proportion to open ratio, and the water level more sensitive to the debris‘ width than length at the same area of accumulated debris.

  • PDF

Environmental Characteristics and Nature-friendly Planning Strategies for an Urban Stream - The Case of Chuncheon's Gongji Stream - (도시하천의 환경특성과 친자연적 계획전략 - 춘천시 공지천을 대상으로 -)

  • Jo Hyun-Kil;Ahn Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.3 s.116
    • /
    • pp.1-11
    • /
    • 2006
  • This study analyzed characteristics of natural and human environments in Chuncheon's Gongji stream, and suggested nature-friendly planning strategies for self-purification of water quality, biodiversity improvement and conservative waterfront recreation. The environmental analysis included streambed structures, floodplain soils, water quality, vegetation, wildlife, and human facilities. Natural colonization of vegetation for the middle section of the study stream was obstructed by a straightened concrete revetment of baseflow channel, and vehicle movement and concrete parking lots across the floodplain. These human disturbances also deteriorated the naturalness of the stream landscape and limited habitation of bird species. However, natural sedimented wetlands in half of the channel width for the lower section of the stream contributed to a desirable vegetational landscape and greater bird occurrence. Based on BOD measurements, water quality of the stream fell under class $II{\sim}III$ of the stream water-quality standard, but it was worse around sewage outlets due to incomplete sewage collection especially during the dry season. Dominant fish species included typical inhabitants of good water-quality streams that are tolerant of adverse habitat changes. Nature-friendly planning strategies were established based on analysis of the environmental characteristics. They focused on not merely spatial zoning and layout divided into four zones - preservation, partial preservation, conservation and use -, but close-to-nature channel revetment techniques, natural water-purification facilities, biotope diversification, and water-friendly recreation and circulation. Strategies pursued both renewal of stream naturalness and hydraulic stability of streamflow by minimizing transformation of natural channel micro-topography and biotope, and by reflecting natural traces of streambed structures such as revetment scour and sedimentation.

A Study on Characteristic of Three-Dimensional Flow around the Artificial Upwelling Structures (인공용승구조물 주변 흐름의 3차원 특성에 관한 연구)

  • Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.290-293
    • /
    • 2006
  • From the hydraulic experiment, it was concluded that upwelling could be enhanced when the relative structure height (the ratio of structure height to water depth) was 0.3 and stratification parameter was 3.0. In addition, the optimum size of rubbers was determined that the effect of the mean horizontal length of block was affected incident velocity than size of block. In the numerical experiment, the relation between the shape of rubber and stratification parameter was verified, ana the hydraulic characteristics of 3-D flow field around the artificial structures were investigated. Phenomena of flow field around the artificial upwelling structures corresponded with the results of hydraulic experiment. The position with maximum velocity in artificial upwelling structure was the center of top of its front side and the slip stream occurred at the inside and behind-bottom of artificial upwelling structures. The velocity of slip stream and early amplitude of velocity were higher in the inside than the behind-bottom.

  • PDF