• Title/Summary/Keyword: stream ecosystem

Search Result 381, Processing Time 0.026 seconds

Ecological health assessments using multiple parameters of fish blood tissues to community along with water chemistry in urban streams

  • Kang, Han-il;Choi, Ji-Woong;Hwang, Seock-Yeon;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.307-318
    • /
    • 2015
  • The objectives of this study were to identify multi-level stressors from blood biomarkers to community-level bioindicators and diagnose the stream ecosystem health in polluted streams. Blood chemistry such as total protein ($T_{Pro}$), blood urea nitrogen ($B_{UN}$), total cholesterol ($T_{Cho}$) and $A_{lb}$umin ($A_{lb}$) were analyzed from sentinel fish tissues; the functions of kidney, gill and liver were significantly decreased in the impacted zone ($I_z$), compared to the control zone ($C_z$). Histopathological analysis showed that fish liver tissues were normal in the $C_z$. Fish liver tissues in the $I_z$, however, showed large cell necrosis and degeneration and also had moderate lobular inflammation and inflammatory cell infiltration of lymphocytic histocytes. Species biotic index (SBI) at species level and stream health assessment (SHA) at community level indicated that chemical impacts were evident in the $I_z$ (ecological health; poor - very poor), and this was matched with the blood tissue analysis and histopathological analysis. The impairments of the streams were supported by water chemistry analysis (nitrogen, phosphorus). Tolerance guild analysis and trophic guild analysis of fish were showed significant differences (P < 0.01) between $C_z$ and $I_z$. Overall, multiple parameter analysis from biomarker level (blood tissues) to bioindicator level (community health) showed significantly greater impacts in the $I_z$ than $C_z$. This approach may be effective as a monitoring tool in identifying the multilateral and forthcoming problems related to chemical pollution and habitat degradation of stream ecosystems.

Selecting Core Areas for Conserving Riparian Habitat Using Habitat Suitability Assessment for Eurasian Otter (서식지 적합성 평가를 이용한 수변지역 핵심 보전지역 선정 - 수달을 대상으로 -)

  • Jeong, Seunggyu;Park, Chong Hwa;Woo, Donggul;Lee, Dong Kun;Seo, Changwan;Kim, Ho Gul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.19-32
    • /
    • 2015
  • In Korea, significant riparian areas have been developed due to river maintenance projects. Introduction of new riparian facilities can negatively affect wildlife in the riparian areas. This study focuses on selecting core conservation areas for Eurasian Otter(Lutra lutra) to support decision making process for development of riparian areas. For the study, first of all, field data of study site were collected by field surveys. Secondly, stream naturalness was assessed to understand physical environments of the study sites. Thirdly, habitat suitability was assessed using occurrence data of Eurasian Otter and environmental data. Lastly, core areas for conservation was selected by comparing and synthesizing stream naturalness map and habitat suitability map. The selected core areas showed several characteristics. The number of artificial facilities is low in the core areas. Rocks which are preferred by Eurasian Otter to eat and excrete are plentiful in the core areas. Also, the ratio of adjacent farmland is high. Based on the analyses, it is expected that this study can contribute to decision making process for environmental spatial plans to better conserve habitats of Eurasian Otter.

Seasonal Change Characteristics of Stream Water Quality in Planted Coniferous Forest (침엽수 인공림 계류수 수질의 계절변화 특성)

  • Kim, Jaehoon;Choi, Hyung Tae;Yoo, Jae Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.929-935
    • /
    • 2015
  • This study was carried out to investigate pH, EC, solutes concentration and ANC characteristics in coniferous forest experiment watershed in Gyeonggi-do, Korea from 2005 to 2007. The average pH value was 6.87 and low at spring season due to deposition in crown. The average EC was $58.4{\mu}S/cm$ and was high at spring season due to high concentration of solutes. The cation and anion concentration was high at spring and fall season with low rainfall. When stream water quality was compared to different watershed, EC was relatively low due to high rainfall and $NO_3{^-}$ was high due to deposition and forest practice. pH and ANC was relatively constant at stream water

Characteristics of Spatial Variability in Water Quality on Stream of Lake Doam Watershed (강우시 및 비강우시 수질 모니터링을 통한 도암호 탁수 발생 원인 분석)

  • Kwon, Hyeokjoon;Lee, Jaewan;Lim, Jungha;Woo, Soomin;Kim, Jonggun;Lim, KyeongJae;Kim, Dongjin;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.43-50
    • /
    • 2020
  • The Doam Lake watershed is one of the non-point source management areas announced by the Ministry of Environment, and is a constant problem for the stream ecosystem dut to Storm water. In this study, a total of 48(rainfall) and 47(non-rainfall) sites were investigated for the entire watershed (Samyangcheon, Chahangcheon, Hoenggyecheon, Yongpyeongcheon, Songcheon, Lake Doam) on August 15, 2019 and on October 18, 2019 to estimate the source of turbid water in the Doam Lake watershed. Subsequently, water quality analysis was performed on Suspended Soild (SS), Turbidity, Total Phosphorus (TP), Total Nitrogen (TN), and Biochemical Oxygen Demands (BOD) and correlation among water quality parameters was analyzed based on the analyzed samples. As a result, most of the turbid water generated during rainfall was in highland fields. During rainfall, Hoengyecheon had the highest average SS concentration among all streams, and during non-rainfall, the average SS concentration was highest in Yongpyeongcheon, so the two stream were selected as vulnerable areas. However, since Yongpyeongcheon may be a temporary phenomenon due to river construction, additional continuous monitoring is required. Therefore, in the Doam Lake watershed, intensive management is required for vulnerable areas.

A Study on the Prediction Model for Analysis of Water Quality in Gwangju Stream using Machine Learning Algorithm (머신러닝 학습 알고리즘을 이용한 광주천 수질 분석에 대한 예측 모델 연구)

  • Yu-Jeong Jeong;Jung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.531-538
    • /
    • 2024
  • While the importance of the water quality environment is being emphasized, the water quality index for improving the water quality of urban rivers in Gwangju Metropolitan City is an important factor affecting the aquatic ecosystem and requires accurate prediction. In this paper, the XGBoost and LightGBM machine learning algorithms were used to compare the performance of the water quality inspection items of the downstream Pyeongchon Bridge and upstream BanghakBr_Gwangjucheon1 water systems, which are important points of Gwangju Stream, as a result of statistical verification, three water quality indicators, Nitrogen(TN), Nitrate(NO3), and Ammonia amount(NH3) were predicted, and the performance of the predictive model was evaluated by using RMSE, a regression model evaluation index. As a result of comparing the performance after cross-validation by implementing individual models for each water system, the XGBoost model showed excellent predictive ability.

Research Trend of Estuarine Ecosystem Monitoring and Assessment (국내 하구 수생태계 현황 및 건강성 조사의 성과와 하구 생태계의 국외 연구동향)

  • Won, Doo-Hee;Lim, Sung-Ho;Park, Jihyung;Moon, Jeong-Suk;Do, Yuno
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • An estuary is an area where a freshwater river or stream meets the ocean. Even before the importance of the value of estuaries was recognized, the estuary was lost because of large-scale conversion by draining, filling, damming, and dredging. In South Korea, 643 estuaries are located, and the total area is 3,248,300 ha, accounting for 32.5% of the total area of South Korea. Over 35% of Korean estuaries are closed estuaries which are only temporally connected with the sea, either permanently or periodically. Since 2008, in order to preserve the estuary ecosystem and solve major issues in the estuary by accumulating knowledge about the estuarine ecosystem, the Ministry of Environment of Republic of Korea has been conducting the "Estuarine Ecosystem Monitoring and Assessment Project". At 668 sites of 325 estuaries, epilithic diatom, benthic macroinvertebrate, fish, and vegetation are investigated, and the habitat condition of each site is evaluated using the newly developed biotic index. More than 100 researchers annually record 2,097 species of estuaries according to the standardized survey guidelines over the past 14 years and provide strictly managed data necessary for establishing estuaries conservation policies. As a result of bibliometric analysis of 1,195 research articles related to the monitoring and assessment of the estuarine ecosystem, research on pollutants such as heavy metals and sediment control have recently been conducted. "Estuarine Ecosystem Monitoring and Assessment Project" is an ecological monitoring type of long-term mandated monitoring that is usually focused on identifying trends. Although it is difficult to identify the mechanism influencing a change in an ecosystem through long-term mandated monitoring, providing empirical data for supporting evidence-based policy, decision-making, and the management of ecosystems. In order to increase the efficiency of the project, research to investigate the relationship between sediments and pollutants and organisms can be conducted at specific estuaries or sites to compensate for the shortcomings of mandatory monitoring.

Ecological Characteristics of Benthic Macroinvertebrates according to Stream Order and Habitat - Focused on the Ecological Landscape Conservation Area - (하천 규모와 서식지에 따른 저서성 대형무척추동물의 생태특성 - 생태·경관보전 지역을 중심으로 -)

  • Hwang, In Chul;Kwon, Soon Jik;Park, Young Jun;Park, Jin Young
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.185-195
    • /
    • 2022
  • This study conducted a survey over spring and autumn from 2014 to 2020 to confirm the ecological characteristics of the size of streams and habitats, centering on the ecological landscape conservation area, and a total 256 species of benthic macroinvertebrates in 105 families, 25 orders, 8 classes, and 5 phyla appeared. In terms of appearance species, by region, the rate of appearance of Ephemeroptera and Trichoptera was high in regions consisting of lotic area and the rate of appearance of Coleoptera and Odonata was high in regions consisting of lentic areas. When comparing the population of Ephemeroptera-Plecoptera-Trichoptera (EPT) groups by region, they were classified into three groups: upstream area, mainstream area, and lentic areas, and it was confirmed that the population ratio of EPT changed as it moved from upstream to downstream. As the stream order increased, the number of species and populations increased. The Shredder group (SH) tended to decrease as the size of stream increased(r=0.9925), and the Collector-Filtering (CF) tended to increase as the size of stream increased(r=0.9319). It was confirmed that the Scraper (SC) replaced each other between species with the same ecological status as it went downstream from upstream, and it is thought that the SC did not differ significantly by stream order. In order to maintain a healthy ecosystem in the designation and management of ecological landscape conservation areas, it is necessary to consider ecological factors such as competition and physico-chemistry factors such as water quality and substrate conditions. Therefore, if the competent authority designated survey areas including buffer areas that include streams and physical habitats of various sizes, it will be advantageous to the conservative area and securing more biological resources.

Fish Community Characteristics in the Gyeongan Stream, a Tributary of the Han River Drainage System, Korea (한강지류 경안천의 어류군집 특성)

  • Choi, Kwang-Seek;Han, Mee-Sook;Kang, Dong-Won;Ko, Myeong-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.2
    • /
    • pp.142-156
    • /
    • 2020
  • This study surveyed Gyeongan Stream, a tributary of the Han River Drainage System, from April to October 2017 to investigate the characteristics of fish communities. The survey collected 40 species of 11 families from 48 survey stations using kick nets and cast nets. The dominant and subdominant species were Zacco platypus (48.0%) and Rhynchocypris oxycephalus (17.7%), respectively. The next most abundant species were Pungtungia herzi (6.8%), Z. koreanus (5.0%), Carassius auratus (4.3%), Squalidus gracilis majimae (2.7%), and Rhodeus notatus (2.5%). Among the fish collected, 14 species (35.0%) were Korean endemic species, and the exotic species were Micropterus salmoides, Lepomis macrochirus, and Cyprinus carpio (Israeli type). The land-locked species were Plecoglossus altivelis, Rhinogobius brunneus, and Cottus koreanus, while the species sensitive to climate change was C. koreanus. The community analysis showed that the dominance was higher at the uppermost stream station, whereas diversity and abundance tended to be lower at the upstream station and higher toward the downstream station. The community structure was largely divided into rivers (uppermost stream, upstream, and middle-lower stream) and lake. The river health was mostly good (23 stations, 47.9%) and fair (15 stations, 31.3%). Comparison with past surveys showed that 12 species identified in the past surveys did not appear in this survey; nine species appeared for the first time in this survey; and the ecosystem disturbance species - M. salmoides and L. macrochirus - tended to spread more widely gradually.

The Restoration of Forest Fire Area in Kagawa Prefecture, Japan (일본 가가와현 산불피해지의 복구대책)

  • Chun, Kun-Woo;Lee, Si-Young;Lim, Young-Hyup;Kakihara, Toshiko;Ezaki, Tsugio
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.238-241
    • /
    • 2007
  • The forest seemed apparently to die on the forest fire area in Honjima, Kagawa Prefecture, Japan. However, the soil that became growing basic of vegetation hardly suffered damage, and the forest recovery was started by the sprout, etc. in the next year. For restoration of forest fire area, the fascine mulching works and log barrier works using the damaged trees were used for the upper-stream, and chack dam and erosion control dam were set up in the downstream. Also, the forest restoration was tried with the plants and the microorganism that inhabit in Honjima to preserve a peculiar forest ecosystem.

  • PDF

Application of Landscape Ecology to Watershed Management : How can We Restore Ecological Functions in Fragmented landscape\ulcorner (유역관리에서 경관생태학의 응용 : 절개된 경관의 생태적 기능을 어떻게 회복시킬 수 있을까\ulcorner)

  • Nakamura, Futoshi
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.373-382
    • /
    • 1998
  • This paper describes the ecological structure and function of riparian zone, and their historical changes with land-use. The riparian zone consists of valley floor landform and riparian vegetation. The functions discussed are attenuation of sunlight energy, input of leaves and needles, contribution of woody debris to streams, and retention of flowing material out of transport. These primary functions directly or indirectly influence water and sediment qualities of streams, bars and floodplains, and thereby aquatic biota. Temporal changes in a hydrological system and riparian ecosystem were examined with reference to land-use conversin in order to understand the linkages between these two systems in Toikanbetsu River. The influences of channelization and land-use on discharge of suspended sediment and wetland vegetation was also investigated in Kushiro Marsh. These two examples suggested that the ecological functions of riparian zone have been degraded as flood control and reclamation works have expanded in the past twenty years The author proposes river restoration planning by preserving or creating landscape elements based on the concepts of sustaining physical and ecological linkages.

  • PDF