• Title/Summary/Keyword: stream ecosystem

Search Result 381, Processing Time 0.024 seconds

The Impact Analyses on the Downstream by the Existing Golf Course (골프장 유출수가 하류수계에 미치는 영향)

  • Lee, Byoung Ho;Kim, Seong Deuk;Cho, Hong Je;Cho, Tae Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.239-251
    • /
    • 1992
  • There has been a great deal of controversy in the views on the impact of the pesticide pollution from the golf courses. The stream and reservoir associated with a existing golf course were investigated. The parameters include the ones related with eutrophication, heavy metals, pesticides. and aquatic ecological conditions. It was found that the impact on the aquatic ecosystem by the pollution from the golf course was not so serious. An aquatic ecological food chain was well established in the reservoir which belongs to the golf course. In contradiction to the general recognition, the livestock farming and agricultural farming gave much more adverse impacts on the stream than the golf course.

  • PDF

Assessment of Flood Impact on Downstream of Reservoir Group at Hwangryong River Watershed (황룡강 유역 저수지군 하류하천 영향평가)

  • Hwang, Soon-Ho;Kang, Moon-Seong;Kim, Ji-Hye;Song, Jung-Hun;Jun, Sang-Min;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.103-111
    • /
    • 2012
  • Works for dam heightening plan have dual purposes: flood disaster prevention by securing additional storage volume and river ecosystem conservation by supplying stream maintenance flow. Now, the dam heightening project is in progress and there are 93 dam heightened reservoir. After the dam heightening project, 2.2 hundred million ton of flood control volume in reservoirs will be secured. Thus it is necessary to evaluate the effects of the dam heightening project on watershed hydrology and stream hydraulics, and resulting flood damages. This study was aimed to assess the impact of outflow from the dam heightened reservoir group on the Whangryong river design flood. The HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System) model was used for estimating flood discharge, while HEC-5 (Hydrologic Engineering Center-5) was used for reservoir routing. This study analysed flood reduction effect on 100yr and 200yr return periods about the before and after heightening of agricultural dams. Based on the results of this study, the reduction of flood peak discharge at downstream of the reservoir group was estimated to be about 41% and 53% for 100yr and 200yr frequencies, respectively.

Review of Features and Applications of Watershed-scale Modeling, and Improvement Strategies of it in South-Korea (유역 모델 특성 및 국내 적용 현황과 발전 방향에 대한 검토)

  • Park, Youn Shik;Ryu, Jichul;Kim, Jonggun;Kum, Donghyuk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.592-610
    • /
    • 2020
  • In South Korea, the concept of water environment was expanded to include aquatic ecosystems with the Integrated Water Management implementation. Watershed-scale modeling is typically performed for hydrologic component analysis, however, there is a need to expand to include ecosystem variability such that the modeling corresponds to the social and political issues around the water environment. For this to be viable, the modeling must account for several distinct features in South Korean watersheds. The modeling must provide reasonable estimations for peak flow rate and apply to paddy areas as they represent 11% of land use area and greatly influence groundwater levels during irrigation. These facts indicate that the modeling time intervals should be sub-daily and the hydrologic model must have sufficient power to process surface flow, subsurface flow, and baseflow. Thus, the features required for watershed-scale modeling are suggested in this study by way of review of frequently used hydrologic models including: Agricultural Policy/Environmental eXtender(APEX), Catchment hydrologic cycle analysis tool(CAT), Hydrological Simulation Program-FORTRAN(HSPF), Spatio-Temporal River-basin Ecohydrology Analysis Model(STREAM), and Soil and Water Assessment Tool(SWAT).

Development of microfluidic green algae cell counter based on deep learning (딥러닝 기반 녹조 세포 계수 미세 유체 기기 개발)

  • Cho, Seongsu;Shin, Seonghun;Sim, Jaemin;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.41-47
    • /
    • 2021
  • River and stream are the important water supply source in our lives. Eutrophication causes excessive green algae growth including microcystis, which makes harmful to ecosystem and human health. Therefore, the water purification process to remove green algae is essential. In Korea, green algae alarm system exists depending on the concentration of green algae cells in river or stream. To maintain the growth amount under control, green algae monitoring system is being used. However, the unmanned, small and automatic monitoring system would be preferable. In this study, we developed the 3D printed device to measure the concentration of green algae cell using microfluidic droplet generator and deep learning. Deep learning network was trained by using transfer learning through pre-trained deep learning network. This newly developed microfluidic cell counter has sufficient accuracy to be possibly applicable to green algae alarm system.

A Survey of Ecosystem Structure in the Watershed of the Seom River and Hoengseong Reservoir, Kangwon Province, Korea (강원도 섬강 (횡성호) 유역의 하천생태계 조사)

  • Shin, Jae-Ki;Kim, Youngsung;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.130-141
    • /
    • 2016
  • This study was conducted to elucidate the structure of river ecosystem in the watershed of the Seom River and Hoengseong Reservoir located in Hoengseong of Kangwon Province from February to October 2007. Topics of the survey were mainly rainfall, discharge, water quality in abiotic factors and attached algae, benthic macroinvertebrates, fish, birds and mammals of flora and fauna in a biotic factors, respectively. Specifically, the Seom River could be seen as a typical flow rate of the stream is controlled to the effect of the dam. Basic water qualities were great to seasonal effects, it was relatively clean. Diatom Achnanthes, Cymbella, Gomphonema, and Navicula were distributed predominantly in the periphytic algae. Benthic macroinvertebrates were mostly aquatic insects and freshwater shellfish, the aquatic insects were abundant Ephemeroptera and Trichoptera. Freshwater fish was the dominant Zacco platypus, fish species varied toward the downstream. Birds were mainly observed in four species, and species Egretta garzetta, which was distributed in a wide area of the Seom River. In mammals, Lutra lutra of Mustelidae was identified that the number of inhabit widely. In aspects of the ecological trophic level, the Seom River was maintained at a relatively stable state in the producer and the consumer relationship. The results of this study will expected to be utilized as a useful data for understanding the structure and function of the lotic and lentic ecosystems.

Wetland Construction: Flood Control and Water Balance Analysis

  • Kim, Duck-Gil;Kwak, Jae-Won;Kim, Soo-Jun;Kim, Hung-Soo;Ahn, Tae-Jin;Singh, Vijay P.
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.197-205
    • /
    • 2010
  • Recent years have witnessed increasing interest in wetland constructions in Korea as a flood control measure during the flood season and for consideration of the ecology during the non-flood season. In this study, hydraulic and hydrologic analyses were performed on a wetland construction plan for use as an alternative sustainable flood defense during the flood season, as well as a wetland that can protect the ecosystem during the non-flood season. The study area was the basin of the Topyeong-cheon stream, which is a tributary of the Nakdong River, including the Upo wetland, which is registered in the Ramsar Convention and the largest inland wetland in Korea. Wetlands were to be constructed at upstream and downstream of the Upo wetland by considering and analyzing seven scenarios for their constructions to investigate the effect of flood control during the flood season; it was found the best scenario reduced the flood level by 0.56 m. To evaluate the usefulness of the constructed wetlands during the non flood season, the water balance in the wetlands was analyzed, with the best scenario found to maintain a minimum water level of 1.3 m throughout the year. Therefore, the constructed wetlands could provide an alternative measure for flood prevention as well as an ecosystem for biodiversity.

Fish Species Compositions and the Application of Ecological Assessment Models to Bekjae Weir, Keum-River Watershed (금강 수계 백제보에서 어류의 종 특성 평가 및 생태평가모델 적용)

  • Moon, Seong-Dae;Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.731-741
    • /
    • 2015
  • The objectives of study were to evaluate fish species compositions of trophic guilds and tolerance guilds and apply ecological fish assessment (EFA) models to Bekjae Weir, Keum-River Watershed. The EFA models were Stream Index of Biological Integrity (SIBI) used frequently for running water and Lentic Ecosystem Health Assessment (LEHA) used for assessments of stagnant water. The region of Bekjae Weir as a "four major river project" was originally a lotic ecosystem before the weir construction (2010, $B_{WC}$) but became more like lentic-lotic hybrid system after the construction (2011, $A_{WC}$). In the analysis of species composition and ecological bioindicator (fish), fish species with a preference of running water showed significant decreases (p < 0.05), whereas the species with a preference of stagnant water showed significant increases (p < 0.05). After the weir construction, relative abundances of tolerant species increased, and the proportion of insectivores decreased. This phenomenon indicated the changes of biotic compositions in the system by the weir construction. Applications of SIBI and LEHA models to the system showed that the two model values decreased at the same time after the weir construction ($A_{WC}$), and the region became more like lentic-lotic hybrid system, indicating the degradation of ecosystem health. The model values of SIBI were 19 and 16, respectively, in the BWC and AWC, and the health conditions were both "C-rank". In the mean time, the LEHA model analysis showed that the values was 28 in the BWC and 24 in the AWC, thus the health was turned to be "B-Rank" in the BWC and "C-Rank" in the AWC. indicating a degradation of ecological heath after the weir construction.

Estimation of low impact development duration of estuaries at urban area (도시 유역에 위치한 하구를 구성하는 하천의 저영향 개발 기간 산정)

  • Jeong, Anchul;Lim, Jeongcheol;Kim, Songhyun;Baek, Chungyeol
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.290-297
    • /
    • 2019
  • The estuary is a transition zone where fresh water and salt water meet because the stream is connected to the open sea area. So estuaries have very high biodiversity and form a unique ecosystem. However, before the recognition of the ecological value of the estuaries, various damage and disturbances have been occurred so countermeasures are needed. The river master plan is acting as a disturbance factor. However, the river master plan has the public object such as water disaster defense, river function improvement, and national water resources management. Therefore, it is necessary to study the ways in which the opposite relationship of development and ecosystem protection coexist. In this study, the concept of environmental windows were used to estimate the low impact development duration. We expected that proposed method for low impact development duration estimation can be used as a basis and basic data to protected the ecosystem from development project and disturbance in the future.

Fish Fauna and the Health Assessment of Independent Streams Flowing into the Yellow Sea in Korea: a Case of the Jeonnam and Jeonbuk Provinces (서해로 유입되는 독립하천의 어류상과 수생태계 건강성 평가: 전남과 전북을 대상으로)

  • Kim, Jin-Jae;Joo, Hyun-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.533-544
    • /
    • 2017
  • In this study, the fauna of freshwater fish were investigated from March until October of 2016 in 24 independent streams in the Jeonnam and Jeonbuk provinces, which were flowing into the Yellow Sea. The health of the aquatic ecosystem in those streams was assessed through the biological and abiological character index (BAc index). During the surveyed period, a total of 4,127 individuals were collected; they belonged to 59 species of 44 genera in 18 families. The most dominant species identified was Zacco platypus, and 12 species were endemic species of Korea, including Rhodeus uyekii. The BAc index indicated a statistically significant correlation (p<0.01 or 0.05). The stage distribution of the aquatic ecosystem health assessment showed the highest rating of 41.7% at the "Fair" stage. The "Good" and "Poor" stages accounted for 20.8% while the "Excellent" stage took up 16.7%. It has been confirmed that the aquatic ecosystem health of independent streams is influenced more by the abiological character index as a consequence of geographical characteristics and artificial/natural limiting factors, than by the biological character index.

The Maximum Temperature Distribution and Improvement Plan of Protected Horticulture Planning Area in Saemanguem Using CFD Simulation (CFD를 활용한 새만금 시설원예 예정지 최고온도 분포 및 개선방안)

  • Son, Jinkwan;Choi, Deuggyu;Park, Minjung;Yun, Sungwook;Kong, Minjae;Lee, Seungchul;Kim, Changhyun;Kang, Donghyeon
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.3
    • /
    • pp.115-128
    • /
    • 2019
  • The A1B scenario predicts that the mean air temperature of South Korea will rise up to $3.8^{\circ}C$ by 2071. However, the effects of ecosystem services are declining because of various environmental problems, including climate change, land use change, stream intensification, non-point pollution, and untreated garbage. Moreover, horticultural sites which have various ecosystem services suffer highly absorbed heat from the heat island phenomenon associated with climate change. Therefore, we analyzed the heat island phenomenon occurring in an protected horticulture estimated area in Saemanguem, South Korea. Using an advanced measurement method, we examined the air temperature change derived from water channels as well as open spaces. The CFD analysis of coverage ratio 85% design showed wind speed of 2.09 m/s and temperature of $38.07^{\circ}C$. At a coverage ratio of 70%, the wind speed was improved to 2.61 m/s and the temperature was improved to $36.89^{\circ}C$. In Alternative 2 with wetlands and trees, the wind speed was 2.71 m/s and the temperature was $35.90^{\circ}C$. When the coverage ratio decreases to 55%, the wind speed increases showing 3.06 m/s and the temperature decreases showing $35.18^{\circ}C$.