• Title/Summary/Keyword: stream direction

Search Result 329, Processing Time 0.021 seconds

Research about Imaginary Line Extension Application in Composition of TV News - With Special Quality of Imaginary Line in Focus - (TV News 영상구성에서 Imaginary Line 확대 적용에 관한 연구 - 이미지너리 라인의 특성을 중심으로 -)

  • Lim, Pyung-Jong;Kwak, Hoon-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.55-65
    • /
    • 2008
  • At these information age when the importance of news is of particular emphasis, the field of image-production for the news are being made rapid progressive by high-tech like multi-media, multi-channel digital system. Even experts who have engaged in the work of broadcasting in th field for a long time are perplexed with rapid development in Broadcasting equipments and expression techniques. The field of TV is characterized by the speed of change and the desire of viewers for new and interesting video images. The image expression system applying image line has ever existed as one of conventional image expression methods. Obsolete and old image expressions are paling into significance for viewers who want to access more information in a short time. but The change of image expression systems due to the progressive stream of time has forced existing imaginary to be changed constantly to accommodate the changing interests and expectations of the viewers. Therefore, in this treatise, we need a broad interpretation about the direction of this imaginary line for TV news image in that existing systems of image producing haven’t also been changed and adapted to the stream of time. In these days, image is defined as not only video, but also audio. also We need to reduce the confusion concerning the imaginary line and contribute to a correct understanding images of TV news for not only customers but also producer by extending and applying the concept of imaginary line to image producing.

A Study on Mapping 3-D River Boundary Using the Spatial Information Datasets (공간정보를 이용한 3차원 하천 경계선 매핑에 관한 연구)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.87-98
    • /
    • 2012
  • A river boundary is defined as the intersection between a main stream of a river and the land. Mapping of the river boundary is important for the protection of the properties in river areas, the prevention of flooding and the monitoring of the topographic changes in river areas. However, the utilization of the ground surveying technologies is not efficient for the mapping of the river boundary due to the irregular surfaces of river zones and the dynamic changes of water level of a river stream. Recently, the spatial information data sets such as the airborne LiDAR and aerial images are widely used for coastal mapping due to the acquisition of the topographic information without human accessibility. Due to these advantages, this research proposes a semi-automatic method for mapping of the river boundary using the spatial information data set such as the airborne LiDAR and the aerial photographs. Multiple image processing technologies such as the image segmentation algorithm and the edge detection algorithm are applied for the generation of the 3D river boundary using the aerial photographs and airborne topographic LiDAR data. Check points determined by the experienced expert are used for the measurement of the horizontal and vertical accuracy of the generated 3D river boundary. Statistical results show that the generated river boundary has a high accuracy in horizontal and vertical direction.

A Study on Effects of Hydraulic Structure on River Environment(I) : Hydraulic Characteristics (수공구조물이 하천환경에 미치는 영향에 관한 연구(I) : 수리학적특성)

  • 안승섭;최윤영;이수식
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.191-199
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the analysis and examination of stream variation conditions and riverbed variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when design flow is yielded. Firstly, in case of removal the existing sediment protection reservoir, the hydraulic variation characteristics like depth drop due to removal of the sediment protection reservoir are thought of little because it is examined that depths drop with about 0.01m and 0.01~0.56m when low flow is yielded and design flood yielded, respectively. Nextly, as the examination result of the variation characteristics of flow velocity in case of removal the existing sediment protection reservoir, it is thought that the concern about riverbed erosion is not serious according to the analyzed result as the mean velocity of the channel section where the velocity varies in case of removal the sediment protection reservoir is about 0.07~1.36m/s when low flow is yielded, and is about 1.02~2.41m/s when design flood is yielded despite riverbed erosion is concerned as it is examined that flow velocity is getting increase as about 0.01m/s when low flow is yielded and about 0.01~0.44m/s when design flood is yielded. Lastly, from the prediction result of riverbed variation for each flow amount condition before and after removal the sediment protection reservoir, it is known that the variation range of riverbed is nearly constant when flow amount of the channel exceeds a specific limit as it is analyzed that the more flow amount, the more erosion and sediment in the channel section of down stream part of the sediment protection reservoir and the sediment protection reservoir~Samho-gyo, and the variation ranges according to flow amount between flood condition and design flood condition have little difference in the channel section of the upstream of Samho-gyo.

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF

A Geomorphological Study on the Locational Characteristics and Construction Method of Dolmens in Hyosanri·Daesinri (지석묘의 입지특성과 축조방식에 대한 지형학적 고찰 - 효산리·대신리를 중심으로 -)

  • PARK, Cheol-Woong;KIM, In-Cheol
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.23-36
    • /
    • 2012
  • This study aims to think about the problem of dolmens: the reasons for the presence of dolmens and how to construct it, at the point of view of geographical and geomorphological. The subjects of this study is the dolmens which locate between at Dogok Hyosanri and Chunyang Daesinri Hwasoon-gun, Jeonlanamdo. The study areas in Hyosanri, Daesinri has been observed as follows. First, the long axis direction of Dolmen upper stone and the slope one are the same. Second, tor, block stream, hockey stick, etc. Third, Composition of the soil silt> sand> clay is distributed in the order. Forth, The soil of high quality silt and the roundness of angular, sub-angular-level and the high frequency, peaks of quarts and illite clay minerals show. Fifth, in the result of $SiO_2/Al_2O_3$, $SiO_2/R_2O_3$, and CIA(Chemical Index of Alteration), Hyosanri, Daesinri areas show mechanical weathering was dominant and chemical weathering environment was not being progressed. The blocks used in construction of dolmens had moved to the bottom of slopes by mass movement such as solifluction then them which had been placed in the position seem to be used by people of Bronze. Based on the above results, the process of construction of dolmens can be estimated as follows. They would dig up the ground under the upper stone of dolmens, put the supporting stone in the place, then dig up earth, place into remains, close the obturating stones, then heal up earth.

Effect on the Wake Flow according to Various length of Rectangular Cylinder in a Parallel Arrangement (병렬구조를 가진 장방형 실린더의 길이가 후류 유동에 미치는 영향)

  • Choe, Sang-Bom;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.760-767
    • /
    • 2014
  • An experimental study is carried out to investigate the effect of jet stream in the gab of rectangular cylinders with different length in a parallel arrangement by using PIV method in a circulating water channel. The height(h) of the rectangular cylinder and the gap between the cylinder is 10mm, and the width(B) which is 300mm. The length of the model for flow direction was applied to 30mm, 60mm, 90mm & 120mm, The aspect ratio of a model on the basis of height(H=30mm) is 1, 2, 3 and 4. Reynolds number $Re=1.4{\times}10^4$, $Re=2.0{\times}10^4$, $Re=2.9{\times}10^4$ based on the height(H) of model for the distance of tidal distributions as of water depth have been applied during the whole experiments. The measurement area was set to 5H rear of the cylinder. As a result, Vortex size in the wake area were increased as velocity increased. and high aspect ratio increased through-flow velocity component in the near wake. Velocity deficit increased highly after near-wake area and low aspect ratio.

The Management Plan for the Ecological Waterfront Space of Muan Changpo Lake (무안 창포호의 자연생태친수공간 조성을 위한 관리방안 기초 연구)

  • Seo, Jung-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.3
    • /
    • pp.15-30
    • /
    • 2019
  • Changpo Lake was created as a part of a land reclamation for refugee self-helping projects. It shows characteristics of a fresh water lake, and still retains the early appearance of reclamation that surrounding regions have not been developed into farm lands. Shallow wetland has formed around the lake, which provides great conditions for diverse lives, and surrounding earthiness is favorable for growth of vegetation and restoration of the ecosystem. However, as facilities of the Muan International Airport nearby Changpo Lake are expanding and barns are being constructed, artificialness is gradually increasing. Particularly, since pollution sources such as sport facilities, farm lands and barns are scattered around Changpo Lake, pollutants are flowing in constantly. Accordingly, the results for setting up management areas according to the spatial characteristics and creating natural ecological spaces near Changpo Lake, Taebongcheon stream and Hakgyecheon stream are as follows. First, the creation of a natural eco-friendly waterfront space should be promoted by securing the health of the aquatic ecosystem and restoring species and the ecosystem. In addition, a consultative body needs to be formed to lead local residents to participating in river investigation and monitoring, maintenance, and management through role sharing. Second, the basic direction of the spatial management plan is to keep the unique charm of Changpo Lake, maintain harmony with nature, create diverse waterfront areas, and secure the continuity of Changpo Lake and inflow streams. Moreover, the area should be divided into three zones such as a conservation zone, a restoration zone and a waterfront zone, and for each zone, the preservation of vegetation, the creation of ecological wetlands and restoration of the ecotone and ecological nature need to be promoted. Third, facilities and activity programs for each space of Changpo Lake should be operated for efficient management of protected areas. In order to suit the status of each space, biological habitats, water purification spaces, experiential and learning spaces, and convenience and rest spaces should be organized and designated as research, monitoring, education, and tourism areas. Accordingly, points of interest should be set up within the corresponding area. In this study, there are many parts that need to be supplemented for immediate implementation since the detailed plans and project costs for the promotion of programs by area are not calculated. Therefore, it is necessary to make detailed project plans and consider related projects such as water quality, restoration of habitats, nature learning and observation, and experience of ecological environments based on the categories such as research, monitoring, education and tourism in the future.

Numerical analysis of deposition and channel change in the vegetation zone (식생대에서 유사의 퇴적과 하도변화 수치모의 분석)

  • Hwang, Hyo;Jang, Chang-Lae;Kang, Minseok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • This study analyzed the bed load transport and channel change on the vegetation zone through laboratory experiments and numerical simulations. To examine the effect of vegetation zone in the laboratory experiment, artificial vegetation zones made of acrylic sticks were installed in the experimental channel, and discharge conditions were adjusted to examine the bed load transport and channel change in the vegetation zone. Next, numerical simulations were performed by applying the same conditions as those of the laboratory experiment to the Nays2D model, a two-dimensional numerical model, and the applicability of the numerical model was examined by comparing the results with the results of the laboratory experiment. Finally, by applying a numerical model, the bed load transport and channel change according to the change in vegetation density were examined. As a result of examining the bed load transport and channel change in the vegetation zone according to the discharge condition change by applying the laboratory experiment and the numerical model, the results of the two application methods were similar. As the discharge increased, bed load from the upper stream was deposited inside the vegetation zone. On the other hand, on the other side of the vegetation zone, the flow was concentrated and erosion occurred. Also, the range of erosion increased in the downstream direction. As a result of examining the bed load transport and channel change according to the change in vegetation density, as the vegetation density increased, the bed load from the upper stream was deposited inside the vegetation zone. On the other hand, due to the increase in vegetation density, the flow was concentrated to the opposite side of the vegetation zone, erosion occurred.

Analysis of Upper- and Lower-level Wind and Trajectory in and from China During the P eriod of Occurrence of Migratory Insect Pests of South Korea (비래해충 발생기간 중국 발원지 바람 및 한반도 유입 궤적 분석)

  • Jung-Hyuk Kang;Seung-Jae Lee;Joo-Yeol Baek;Nak-Jung Choi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.415-426
    • /
    • 2023
  • In this study, the horizontal and vertical structure of wind speed and wind direction were analyzed at the origin of migratory insect pests in China. Wind rose analysis was carried out using the Land-Atmosphere Modeling Package (LAMP) - WRF data, which has the spatiotemporal resolution of about 20 km and 1 hour intervals. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) was employed for backward trajectory analysis between South Korea and Southeastern China with Global Data Assimilation System (GDAS). The research interest date is July 16, when rice planthopper and leafhopper were observed at the same time. In order to examine where a jet stream occurs in the vertical in source regions and South Korea during the period (July 8 to July 17 in 2021), three-dimensional wind information was extracted and analyzed using the east-west, north-south, and vertical component wind data of the LAM P. The vertical distribution of wind showed that the wind changed in favor of the inflow of migratory insect pests during the period. As a result of analyzing the wind rose, about 30% or more of the wind at a point close to South Korea was classified into the low-level jet stream. In addition, majority of the wind directions for the low-level jet streams (rather than high-level jet streams) at the five origin sites were heading toward South Korea and even Japan, and this was supported by the HYSPLIT-based backward trajectory analysis.

Numerical Study on the Observational Error of Sea-Surface Winds at leodo Ocean Research Station (수치해석을 이용한 이어도 종합해양과학기지의 해상풍 관측 오차 연구)

  • Yim Jin-Woo;Lee Kyung-Rok;Shim Jae-Seol;Kim Chong-Am
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.189-197
    • /
    • 2006
  • The influence of leodo Ocean Research Station structure to surrounding atmospheric flow is carefully investigated using CFD techniques. Moreover, the validation works of computational results are performed by the comparison with the observed data of leodo Ocean Research station. In this paper, we performed 3-dimensional CAD modelling of the station, generated the grid system for numerical analysis and carried out flow analyses using Navier-Stokes equations coupled with two-equation turbulence model. For suitable free stream conditions of wind speed and direction, the interference of the research station structure on the flow field is predicted. Beside, the computational results are benchmarked by observed data to confirm the accuracy of measured date and reliable data range of each measuring position according to the wind direction. Through the results of this research, now the quantitative evaluation of the error range of interfered gauge data is possible, which is expected to be applied to provide base data of accurate sea surface wind around research stations.