• Title/Summary/Keyword: stream diagnosis

Search Result 53, Processing Time 0.028 seconds

Establishing Diagnosis Systems for Impaired Stream Ecosystem using Stream/River Ecosystem Survey and Health Assessment (수생태계 현황 조사 및 건강성 평가결과를 활용한 수생태계 훼손원인 진단체계 구축)

  • Lee, Jong-Won;Lee, Sang-Woo;Hwang, Soon-Jin;Jang, Min-Ho;Won, Doo-Hee;An, Kyung-Jin;Park, Hye-Jin;Lee, Junga
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The Stream/River Ecosystem Survey and Health Assessment has been carried out regarding the ecological health of the streams by the Ministry of Environment (MOE), South Korea. However, the sources of impairment of the stream ecosystem and the interactions between the sources, stressors, and the responses of impaired streams have not been taken into consideration. The purpose of this study is to propose the establishment of diagnosis systems for the impaired stream ecosystem because of the need to incorporate the same in the making of the policy to enable the recovery and improvement of the health of the impaired streams or river ecosystem. First, we define the concept of a diagnosis of the impaired stream or river ecosystem through a literature review. Second, through case studies [e.g., US CADDIS (Causal Analysis/Diagnosis Decision Information System), AUS. Eco Evidence, EU WFD (Water Framework Directive)], we try to develop the diagnosis system for the making of policy. In this study, the diagnosis system that is proposed consists of eight steps including the basic data collection, detecting or suspecting impairment, defining the impaired stream reach, identifying the biological impaired cases and listing the candidate causes, illustrating the interactive conceptual diagrams between stressors and responses, investigating the stressors-responses in the field, verifying causes and identifying the probable causes of the impaired cases, and summarizing and proposing the restoration of the streams. The results of this study will support and enable efficient decision-making for sustainable stream restoration and management based on the diagnosis of the probable causes for the impaired complex and the diverse stream ecosystem.

Analysis of Relative Importance of Socio·Economic Factors in Establishing Diagnosis Systems for Impaired Stream Ecosystem (국내 수생태계 훼손 원인 진단체계 구축을 위한 사회·경제적 특성의 상대적 중요도 분석)

  • An, Kyung-Jin;Kim, Su-Yeon;Lee, Sang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.2
    • /
    • pp.13-26
    • /
    • 2018
  • The restoration of the impaired stream ecosystem is an important part of river policies in Ministry of Environment (MoE). However, the diagnosing the impairment sources of stream ecosystem has been omitted on the current river projects and policies. This phenomena lead the remaining impairment sources keep influencing on negative effects on streams. Hence, it is critical to construct a diagnosis system of impairment sources in order to increase the efficiency of various river restoration projects and policies. Moreover, it is also important to understand the relative impact of socio-economic factors of the impairment of stream ecosystems so as to build a domestic diagnosis system in place. Therefore, the study aims to analyse the relative effects of socio-economic factors which are the source of the stream ecosystem impairments through implementing the Analytic Hierarchy Process (AHP). In order to achieve the goal, a list of socio-economic factors influencing the stream health has been derived. On the basis of the derived causes list, AHP questionnaire were carried out to the experts of aquatic ecology. The study results could be implemented to analysing the relative influence of socio-economic impairment causes in domestic stream environments. In addition, more case study investigation is needed to cross-check if the derived impairment causes and weights are applied in the field as well as to develop more reliable indicators.

Selection Priority of Tributary Catchments for Improving Water Quality using Stream Grouping Method (하천그룹화 방법을 이용한 수질개선 하천유역의 우선순위 선정)

  • Cho, Byungwook;Choi, Jeongho;Yi, Sangjin;Kim, Youngil
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.18-25
    • /
    • 2012
  • For effective watershed management, it is very important to select the tributaries through selection and concentration of targeted tributary catchments for improving water quality within the limited financial conditions. This study introduced the selection and diagnosis procedure of tributary catchments for improving water quality at Chungcheongnam-do based on water quality and flowrate monitoring, stream grouping method. The tributaries with high value of water quality and flowrate were selected for improving water quality according to stream grouping method. The diagnosis of selected tributaries for improving water quality was performed with analysis of the pollution load (generated, discharged, delivered) and point source discharged pollution load density. The plans for improving water quality of tributaries were suggested thorough various diagnosis of tributary catchments. For improving water quality of tributaries in Chungcheongnam-do, the tributary catchments in the Dangjin, Asan, Yesan, Cheonan, Hongseong area should be preferentially considered. The water quality improving plans for those tributary catchments, in accordance with the reduction of sources of pollution by population and livestock, should be established.

Auto-Generation of Diagnosis Program of PLC-based Automobile Body Assembly Line for Safety Monitoring (PLC기반 차체조립라인의 안전감시를 위한 진단프로그램 생성에 관한 연구)

  • Park, Chang-Mok
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2010
  • In an automated industry PLC plays a central role to control the manufacturing system. Therefore, fault free operation of PLC controlled manufacturing system is essential in order to maximize a firm's productivity. On the contrary, distributed nature of manufacturing system and growing complexity of the PLC programs presented a challenging task of designing a rapid fault finding system for an uninterrupted process operation. Hence, designing an intelligent monitoring, and diagnosis system is needed for smooth functioning of the operation process. In this paper, we propose a method to continuously acquire a stream of PLC signal data from the normal operational PLC-based manufacturing system and to generate diagnosis model from the observed PLC signal data. Consequently, the generated diagnosis model is used for distinguish the possible abnormalities of manufacturing system. To verify the proposed method, we provided a suitable case study of an assembly line.

Population Dynamics of Zacco platypus in Gap-Stream and Its Relation with Water Quality

  • Shin, Young-Eun; Choi, Ji-Woon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.422-431
    • /
    • 2009
  • This study was to provide basic data for aquatic ecosystem research using fishes. Field sampling was carried out at five selected sites of Gap Stream, and fish samples, especially for a selection of sentinel species were collected three times in June, September, and October 2007. We analyzed total length distribution of Zacco platypus in relation with the season and the sampling sites, and then compared with total body weight, condition factor (K), and age distribution of the fish. The fish population data were compared with physico-chemical water quality, obtained from the Ministry of Environment, Korea. Water quality analysis showed a significant nutrient enrichment, based on total nitrogen (TN) and total phosphorus (TP), and organic matter pollution, based on biological oxygen demand (BOD) and chemical oxygen demand (COD) in the Site 5, which is directly influenced by wastewater disposal plant (WDP). Population analysis of the sentinel species showed that the total number of individuals, age distribution, and the population size-structure were influenced by the effluents from the WDP, and that reproductive failure of young-age population were evident in Site 5. According to the relation analysis of total weight to K, the disturbed population was mainly attributed to combined effects of habitat modifications and chemical degradations. Regression analysis of K values against water quality parameters showed significant (p<0.05) positive relations with nutrient and organic matter contents. Our data suggest that the population structure using a sentinel fish species reflected the ambient water quality in the stream and that diagnosis of aquatic ecosystem health using Z. platypus population may be practical for water resource and ecosystem conservations.

Ecological Assessments of Aquatic Environment using Multi-metric Model in Major Nationwide Stream Watersheds (우리나라 주요하천 수계에서 다변수모델을 이용한 생태학적 수환경 평가)

  • An, Kwang-Guk;Lee, Jae-Yon;Bae, Dae-Yeul;Kim, Ja-Hyun;Hwang, Soon-Jin;Won, Doo-Hee;Lee, Jae-Kwan;Kim, Chang-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.796-804
    • /
    • 2006
  • The objective of this research was to develop ecological multi-metric models using natural fish assemblages for a diagnosis of current stream health condition, and apply the model to nationwide lotic ecosystems of the Geum River, the Youngsan River, and the Sumjin River. The ecological stream health model was based on the index of biological integrity (IBI), which was originally developed in North American streams by Karr (1981), and the Rapid Bioassessment Protocol (RBP), which was scientifically established by the US EPA (1999). The metric numbers and metric attributes were partially changed for the regional applications, so the scoring criteria was modified for the assessment. Overall, metric values, based on the IBI calculations, reflected conventional water quality characteristics, based on nutrient regime, and agreed with results of staticeco-toxicity tests. Some stations impaired in terms of stream health were identified by the IBI approach, and also major key stressors affecting the stream health were identified by additional evaluations of physical habitats. Our preliminary results suggested that biological integrity in stream ecosystems was largely disturbed by habitat degradation as well as chemical pollutions. This new approach would be used as a key tool for ecological restorations and species conservations in the degraded aquatic ecosystems in Korea and applied for elucidating major causes of ecological disturbances. Ultimately, this approach provides us an effective management strategy of stream ecosystems through establishments of ecological networks in various watersheds.

Two-Stream Convolutional Neural Network for Video Action Recognition

  • Qiao, Han;Liu, Shuang;Xu, Qingzhen;Liu, Shouqiang;Yang, Wanggan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3668-3684
    • /
    • 2021
  • Video action recognition is widely used in video surveillance, behavior detection, human-computer interaction, medically assisted diagnosis and motion analysis. However, video action recognition can be disturbed by many factors, such as background, illumination and so on. Two-stream convolutional neural network uses the video spatial and temporal models to train separately, and performs fusion at the output end. The multi segment Two-Stream convolutional neural network model trains temporal and spatial information from the video to extract their feature and fuse them, then determine the category of video action. Google Xception model and the transfer learning is adopted in this paper, and the Xception model which trained on ImageNet is used as the initial weight. It greatly overcomes the problem of model underfitting caused by insufficient video behavior dataset, and it can effectively reduce the influence of various factors in the video. This way also greatly improves the accuracy and reduces the training time. What's more, to make up for the shortage of dataset, the kinetics400 dataset was used for pre-training, which greatly improved the accuracy of the model. In this applied research, through continuous efforts, the expected goal is basically achieved, and according to the study and research, the design of the original dual-flow model is improved.

Ecosystem Diagnosis and Evaluations Using Various Stream Ecosystem Models (다양한 하천생태모델을 이용한 생태계 진단 및 평가)

  • Kim, Ja-Hyun;Lee, Eui-Haeng;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.370-378
    • /
    • 2007
  • The objective of this research was to diagnose integrative ecological health in Bansuk Stream, one of the tributaries of Gap Stream, using the fish assemblage during July 2006${\sim}$April 2006. For this research, we selected six sampling sites and applied some approaches such as the Index of Biological Integrity (IBI), Qualitative Habitat Evaluation Index (QHEI), and necropsy-based Health Assessment Index (HAI). The stream health condition, based on the IBI values, averaged 24 (n= 18, range: $10{\sim}46$), indicating "poor${\sim}$fair" condition according to the criteria of US EPA (1993). Physical habitat condition, based on the QHEI, averaged 116 (n=6, range: $77{\sim}139$), indicating "fair${\sim}$good" condition. Values of IBI were more correlated with 3 metrics of instream cover ($M_1$, r=0.553, p=0.017, n=18), flow/velocity ($M_3$, r=0.627, p=0.005, n=18), and riffes/bends ($M_7$, r=0.631, p=0.005, n=18) than other metrics. Value of HAI in the control was zero (i.e., excellent condition), while the values in the T1 and T2 treatments were 5 (range: 0${\sim}$30) and 50 (range: 40${\sim}$80), respectively. The maximum values of IBI (46) were coincided with zero of HAI. Thus, these approaches seem to be a good tool for a diagnosis and evaluations of stream ecosystem health.

Effects of skin temperature change, cold pain and muscle activity by Cold Air Application type on the induced delayed onset muscle soreness (지연성 근육통 유발 후 냉기 적용 방법이 피부온도의 변화, 냉각 통과 근육 기능에 미치는 효과)

  • Choi, Yoorim;Jung, Bongjae;Hwang, Byeongjun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • The purpose of this study was to after induced delayed onset muscle soreness, the purpose of this study is to present the effective way on skin temperature changes and cold pain for 14 subjects during to applied with only Cold-jet stream and Cold-jet stream with infra red. 14 healthy men and women who delayed onset muscle soreness eccentric contractions induced by exercise and then the biceps alone was applied to the Cold-jet stream. We measured the time that skin temperature fall from room temperature to $10^{\circ}C$(first period), the time rewarmed from $10^{\circ}C$ to $20^{\circ}C$(second period), the time fall again to $10^{\circ}C$(third period) and the time rewarmed again to $20^{\circ}C$(fourth period). Cold-jet stream with infrared combination therapy was performed with the same method. Results of this study were 1st and 2nd experimental cooling experiments in the to fall to $10^{\circ}C$ Cold-jet stream with infrared combination therapy than in the Cold-jet stream was longer(p<.05). At second period, It took longer in Cold-jet stream with infrared rewarmed than Cold-jet stream to rewarm skin(p<.05). Cold-jet stream with infrared combination therapy than Cold-jet stream had less incidence of cold pain(p<.05). Thickness of biceps brachii were found significant difference related measurment each group was consistent. In this study, Cold-jet stream with infrared combination therapy more effective than Cold-jet stream in reduced cold pain and lowering skin temperature. This work was supported by education capacity building project fund of Taegu Science University, 2012.

Diagnosis on the Riparian Vegetation in the Downstream Reach of the Gyungan Stream for Creating Vegetation Belt (수변 완충식생대 조성을 위한 경안천 하류유역의 강변식생 실태 진단)

  • An, Ji Hong;Lim, Chi Hong;Lim, Yun Kyung;Nam, Kyeong Bae;Pi, Jung Hun;Moon, Jeong Sook;Bang, Je Yong;Lee, Chang Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.680-692
    • /
    • 2015
  • A landcover map watershed of downstream reach in the Gyungan stream was made by using the existing land use map and interpreting satellite images and aerial photos. Based on the map, we analyzed land use patterns of this basin. Broad-leaved forest occupied the largest area among landscape elements established in this watershed. The total area of the zone designated as the waterside district by the central government was 4.7 km2 , and broad-leaved forest occupied the largest area as 33.9% in this zone. Therefore, the area did not meet the qualifications of riparian zones. Riparian vegetation established in the Gyungan stream watershed was composed of Phragmites communis, Miscanthus sacchariflorus, Salix gracilistyla, Salix koreensis. But terrestrial vegetation elements such as Ambrosia trifida, Ailanthus altissima, Robinia pseudoacacia also appeared in this area. On the other hand, Phragmites japonica, Salix gracilistyla, Salix koreensis, Salix integra, Ulmus davidiana and so on appeared in the riparian zone the reference streams. Differently from the vegetation established on the reference streams, terrestrial vegetation elements appeared frequently in the Gyungan stream watershed. This result would be due to that the Gyungan stream watershed is exposed to excessive human interferences.