• Title/Summary/Keyword: stream depletion rate

Search Result 22, Processing Time 0.023 seconds

Evaluation of Stream Depletion from Groundwater Pumping in Deep Aquifer Using An Analytical Model (해석적 모형을 이용한 심부대수층 지하수 양수로 인한 하천수 감소량 분석)

  • Lee, Jeongwoo;Chung, Il-Moon;Kim, Nam Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.769-777
    • /
    • 2016
  • The objective of this study was to evaluate the stream depletion from groundwater pumping in deep aquifer using the Ward and Lough's analytical solution (2011) which considers a two-layer leaky aquifer system. The calculated results for each pumping from the 110 wells beside streams showed a wide range of non-dimensional stream depletion, that is the streamflow depletion rate divided by the groundwater pumping rate, from lower than 0.1 to more than 0.9 on average for 5 years depending on the specific properties of well location. From the comparison with Hunt's solution (1999) of a single layer aquifer, the Ward and Lough's solution showed about 50% lower than the Hunt's solution due to the difference of hydraulic properties between the first and second layers as well as the lagged effect of vertical leakance. It was also found that the groundwater pumping has a minor effect on the stream depletion if the stream depletion factor (SDF) of the 1st layer is higher than about 1,000 or the SDF of the 2nd layer is higher than about 100, or the vertical leakance is smaller than $10^{-5}s^{-1}$. Furthermore, in the present study, the variations of the stream depletion were assessed according to the magnitude of unmeasured hydraulic properties such as transmissivity and storage coefficient of the 1st layer, vertical hydraulic conductivity of the 2nd layer, the streambed hydraulic conductance.

Analysis of Stream Depletion Rate by Groundwater Abstraction in Leaky Aquifer (누수대수층 지하수 양수에 따른 하천수 감소율 거동 분석)

  • Lee, Jeongwoo;Chung, Il-Moon;Kim, Nam Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1001-1008
    • /
    • 2017
  • This study was to evaluate the stream depletion rate from groundwater pumping with varying stream-well distance, aquifer transmissivity, storage coefficient, leakage coefficient, streambed hydraulic conductance using the Zlotnik and Tartakovsky analytical solution which considers a two-layer leaky aquifer-stream-well system. For the hydraulic conditions applied in this study, the streambed hydraulic conductance and the aquitard leakage coefficient were assessed to have a dominant influence on the stream depletion rate. In order to evaluate the applicability of Zlotnik and Tartakovsky analytical solution ignoring the change in the drawdown in the lower aquifer and applying the fixed head boundary condition, the solution was compared with Hunt analytical solution derived from the more practical conditions simultaneously taking into account the drawdown changes in the upper and lower aquifers. As a result, the Zlotnik and Tartakovsky analytical solution is suitable for predicting short-term effects of less than one year in the pumping period, and when the stream depletion factor (SDF) is greater than 2,500 days, or when the product of the leakage coefficient and the stream-well distance is less than 10 cm/s.

Evaluation of stream depletion from groundwater pumping in shallow aquifer using the Hunt's analytical solution (Hunt 해석해를 이용한 천부대수층 지하수 양수로 인한 하천수 감소 영향 분석)

  • Lee, Jeongwoo;Chung, Il Moon;Kim, Nam Won;Hong, Sung Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.923-930
    • /
    • 2016
  • This study was to evaluate the stream depletion from groundwater pumping in shallow aquifer using the Hunt's analytical solution (2009) which considers a two-layer leaky aquifer-stream system. From the total 2,187 cases of simulations with combinations of various aquifer and stream properties, the streamflow depletion rates divided by the groundwater pumping rate showed the low values when the stream depletion factor (SDF) is higher than 1,000-10,000, and was more sensitive to the aquitard hydraulic conductivity than the streambed hydraulic conductivity. The comparison of the Hunt's solution (2009) with the Hunt's solution (1999) of a single layer aquifer indicated that the maximum difference between the dimensionless stream depletions calculated by using both solutions is above 0.3, and the stream depletion is significantly affected by the hydraulic properties of the $2^{nd}$ layer as the SDF of the first layer increases. The Hunt's solution (2009) was applied to the real shallow groundwater well that is located in Chunju-Si, and the results revealed that the groundwater pumping has significant effects on streamflow in a short period of time, showing that the dimensionless stream depletion exceeds 0.8 within a few days. It was also found that the shallow groundwater pumping effects on stream depletion are highly dependent on the stream-well distance for the locations with high hydraulic diffusivity of $1^{st}$ layer and low vertical leakance between $1^{st}$ and $2^{nd}$ layers.

Change of Groundwater-Streamflow Interaction according to Groundwater ion in a Green House Land (비닐하우스 지역의 지하수 양수에 따른 지하수-하천수 상호 유동 변화 분석)

  • Kim, Nam Won;Lee, Jeong Woo;Chung, Il Moon;Kim, Chang Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.1051-1067
    • /
    • 2012
  • Increased use of water curtain facilities to keep green house warm during winter cultivation has been known to cause excessive groundwater ion which might lead to decline of groundwater level, resulting in streamflow depletion. Therefore it is required to quantitatively assess the effects of groundwater ion on the streamflow depletion such as magnitude and extent. The objective of this study is to assess the change of stream-aquifer interaction according to groundwater ion near stream. To this end, a green house cultivation land in Sooha-ri, Sindun-myun, Icheon-si, Gyonggi-do was selected as a field experimental site, and monitoring wells were established near and within stream to observe the water level and temperature changes over a long period of time. From the observed water level and temperature data, it was found that the river reach of interest changed to a losing stream pattern during the winter cultivation season due to groundwater level decline around pumping wells near the stream. The continuous exchange rates between stream and aquifer were estimated by plugging the observed water level data series into the experimental relation between head difference and exchange rate, showing the streamflow depletion by 16% of the groundwater pumping rate in Feb, 2011.

The Effect of Drought Simulated by Discharge Control on Water Quality and Benthic Diatom Community in the Indoor Experimental Channel (인공하천에서 유량감소로 모사한 가뭄효과가 수질 및 부착돌말류 군집에 미치는 영향)

  • Park, Hye-Jin;Kim, Baik-Ho;Kong, Dong-Soo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.129-138
    • /
    • 2012
  • We investigated an ecological impact of drought simulated by discharge depletion on the water quality and benthic diatom community in the indoor experimental channel. As artificial substrates slide-glass was installed in acrylic channel for 16 days. Channels were supplied continuously with eutrophic lake water with a discharge rate of 6 L $min^{-1}$ in duplication during the colonized period. And then during the discharge depletion period, three discharge rates were provided: NDF (No depletion of flow rate (Control): 6 L $min^{-1}$), LDF (Low depletion of flow rate: 3 L $min^{-1}$) and HDF (High depletion of flow rate: 1 L $min^{-1}$). Environmental factors in the water, such as suspended solid, Chl-$a$ and nutrients concentration, were measured with periphytic algae including AFDM (ash free dry matter), Chl-$a$ concentration and cell density at 1-day intervals. Light intensity increased significantly with discharge depletion (F=229.5, p= 0.000). $NH_4$-N concentration was highest at HDF. Suspended solid in outflowing water decreased at HDF (88%), LDF (97%) and NDF (99%), compared to inflowing water (100 %). Chl-$a$ in substrates increased more than two times at LDF and HDF than NDF (F= 8.399, p=0.001). Also AFDM and benthic diatom density increased significantly at LDF and HDF than NDF (F=9.390, p=0.001; F=6.088, p=0.007). In all experimental groups, $Aulacoseira$ $ambigua$, $Achnanthes$ $minutissima$ and $Aulacoseira$ $granulata$ were dominant species accounting for greater than 10% of benthic diatom density. The most dominant species, $A.$ $ambigua$ was highest at LDF, followed by HDF and NDF (F=8.551, p=0.001). In conclusion, the effect of drought simulated by discharge depletion in an artificial stream ecosystem caused significant changes on water quality and benthic diatom biomass. This result provides a useful data to understand the effect of draught on stream ecosystem in situ.

Propagation of radiation source uncertainties in spent fuel cask shielding calculations

  • Ebiwonjumi, Bamidele;Mai, Nhan Nguyen Trong;Lee, Hyun Chul;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3073-3084
    • /
    • 2022
  • The propagation of radiation source uncertainties in spent nuclear fuel (SNF) cask shielding calculations is presented in this paper. The uncertainty propagation employs the depletion and source term outputs of the deterministic code STREAM as input to the transport simulation of the Monte Carlo (MC) codes MCS and MCNP6. The uncertainties of dose rate coming from two sources: nuclear data and modeling parameters, are quantified. The nuclear data uncertainties are obtained from the stochastic sampling of the cross-section covariance and perturbed fission product yields. Uncertainties induced by perturbed modeling parameters consider the design parameters and operating conditions. Uncertainties coming from the two sources result in perturbed depleted nuclide inventories and radiation source terms which are then propagated to the dose rate on the cask surface. The uncertainty analysis results show that the neutron and secondary photon dose have uncertainties which are dominated by the cross section and modeling parameters, while the fission yields have relatively insignificant effect. Besides, the primary photon dose is mostly influenced by the fission yield and modeling parameters, while the cross-section data have a relatively negligible effect. Moreover, the neutron, secondary photon, and primary photon dose can have uncertainties up to about 13%, 14%, and 6%, respectively.

Optimization of fractionation efficiency (FE) and throughput (TP) in a large scale splitter less full-feed depletion SPLITT fractionation (Large scale FFD-SF) (대용량 splitter less full-feed depletion SPLITT 분획법 (Large scale FFD-SF)에서의 분획효율(FE)및 시료처리량(TP)의 최적화)

  • Eum, Chul Hun;Noh, Ahrahm;Choi, Jaeyeong;Yoo, Yeongsuk;Kim, Woon Jung;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.453-459
    • /
    • 2015
  • Split-flow thin cell fractionation (SPLITT fractionation, SF) is a particle separation technique that allows continuous (and thus a preparative scale) separation into two subpopulations based on the particle size or the density. In SF, there are two basic performance parameters. One is the throughput (TP), which was defined as the amount of sample that can be processed in a unit time period. Another is the fractionation efficiency (FE), which was defined as the number % of particles that have the size predicted by theory. Full-feed depletion mode (FFD-SF) have only one inlet for the sample feed, and the channel is equipped with a flow stream splitter only at the outlet in SF mode. In conventional FFD-mode, it was difficult to extend channel due to splitter in channel. So, we use large scale splitter-less FFD-SF to increase TP from increase channel scale. In this study, a FFD-SF channel was developed for a large-scale fractionation, which has no flow stream splitters (‘splitter less’), and then was tested for optimum TP and FE by varying the sample concentration and the flow rates at the inlet and outlet of the channel. Polyurethane (PU) latex beads having two different size distribution (about 3~7 µm, and about 2~30 µm) were used for the test. The sample concentration was varied from 0.2 to 0.8% (wt/vol). The channel flow rate was varied from 70, 100, 120 and 160 mL/min. The fractionated particles were monitored by optical microscopy (OM). The sample recovery was determined by collecting the particles on a 0.1 µm membrane filter. Accumulation of relatively large micron sized particles in channel could be prevented by feeding carrier liquid. It was found that, in order to achieve effective TP, the concentration of sample should be at higher than 0.4%.

Return flow analysis of paddy field by water balance method (물수지분석 기법에 의한 논에서의 회귀율 조사분석)

  • 정상옥;손성호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.59-68
    • /
    • 2001
  • A water balance analysis was performed for a paddy field neighboring the Dongchang stream, downstream of the Unmun reservoir, which is constructed for the urban water supply. Daily rainfall data were collected and irrigation water flow rate, drainage flow rate, evaportranspiration, infiltration, and piezometeric head were measured in the field. The flow rates were continuously observed by water level logger during the growing season. The evaportranspiration and the infiltration were measured by N-type depletion meter and cylindrical infiltrometer, respectively. PVC pipes with 12mm diameter were used for piezometric head measurement. Total Irrigation and drainage flows were 3,608mm and 1,170mm in 1999, and 3,971mm and 1,548mm in 2000, respectively. The mean and range of the daily infiltration rate were 4.4mm/d and 3.4mm/d to 5.5mm/d in 1999 and 5.1mm/d and 4.1mm/d to 6.5mm/d in 2000, respectively. The net ground water flow including the change of soil water storage was 2,855mm in 1999 and 2,540mm in 2000. The evapotranspiration was 458.3mm in 1999 and 553.5mm in 2000. The range of daily evapotranspiration rate was from 1.6 to 8.7mm/d. The return flow ratio was about 32% in 1999 and 39% in 2000 and three year average was 35% including previous study in 1997. The amount of irrigation water was much higher than design standards or references in this study, This was caused by the inadequate water management practice in the area where water was oversupplied on farmers’ request rather than following sound water management principles.

  • PDF

Design of Entropy Encoder for Image Data Processing (화상정보처리를 위한 엔트로피 부호화기 설계)

  • Lim, Soon-Ja;Kim, Hwan-Yong
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.1
    • /
    • pp.59-65
    • /
    • 1999
  • In this paper, we design a entorpy encoder of HDTV/DTV encoder blocks on the basis of MPEG-II. The designed entropy encoder outputs its bit stream at 9Mbps bit rate inserting zero-stepping block to protect the depletion of buffer in case that the generated bit stream is stored in buffer and uses not only PROM bit combinational circuit to solve the problem of critical path, and packer block, one of submerge, is designed to packing into 24 bit unit using barrel shifter, and it is constructed to blocks of header information encoder, input information delay, submerge, and buffer control. Designed circuits is verified by VHDL function simulation, as a result of performing P&R with Gate compiler that apply $0.8{\mu}m$ Gate Array specification, pin and gate number of total circuits has been tested to each 235 and about 120,000.

  • PDF

Size-sorting of Micron-sized Particles using Two Gravitational SPLITT Fractionation (GSF) Connected in a Series (Tandem GSF)

  • Kwon, Min-Hyuk;Moon, Yoon-Jung;Jung, Euo-Chang;Lee, Kyou-Ho;Lee, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.681-686
    • /
    • 2011
  • SPLITT Fractionation (SF) provides separation of sample into two subpopulations. Separation into more than two subpopulations requires repeated SF operations. In this study, two Gravitation SF (GSF) channels were connected in a series (Tandem GSF) to obtain a separation into three subpopulations and to improve the fractionation efficiency (FE) of the fraction-b in the full-feed depletion (FFD) mode. In a single channel FFD-GSF operation, the fraction-a contained mostly the beads smaller than the cutoff diameter ($d_c$), while the fraction-b contained beads smaller than $d_c$ as well as those larger than dc, as expected. The measured FE's of the fraction-b are much lower than those of the fraction-a in all cases. The FE's of the fraction-a are higher than 84% with the average of about 91%, while those of the fraction-b are lower than 60% with the average of about 43%. No particular trends were found between FE and $d_c$, indicating the performance of FFD-GSF does not change with $d_c$ in the range where tested. Also no clear trends were observed between the FE and the sample-feeding flow rate, indicating higher sample-feeding rate can be used to increase the sample throughput without losing resolution. When two GSF channels were connected so that the flow stream emerging from the outlet-b of the channel-1 is fed directly into the channel-2, all three FE's measured for the fraction-1a were high with the average value of 99%, indicating it contains almost purely the beads smaller than $d_c$. The FE's measured for the fraction-2a are still good with the average value of 92%. The FE's measured for the fraction-2b are 64% in average, which is about 20% improvement from those obtained in a single channel FFD-GSF at the same conditions.