• Title/Summary/Keyword: stream data processing

Search Result 447, Processing Time 0.031 seconds

QUISIS: A Query Index Method Using Interval Skip List (QUISIS: Interval Skip List를 활용한 질의 색인 기법)

  • Min, Jun-Ki
    • The KIPS Transactions:PartD
    • /
    • v.15D no.3
    • /
    • pp.297-304
    • /
    • 2008
  • Due to the proliferation of the Internet and intranet, new application domains such as stream data processing have emerged. Stream data is real-timely and continuously generated. In stream data environments, a lot of queries are registered, and then, the arrived data item is evaluated by registered queries. Thus, to accelerate the query performance, diverse continuous query index schemes have been proposed for stream data processing systems. In this paper, we focus on the query index technique for stream data. In general, a stream query contains the range condition. Thus, by using range conditions, the queries can be indexed. In this paper, we propose an efficient query index scheme, called QUISIS, using a modified Interval Skip Lists to accelerate search time. QUISIS utilizes a locality where a value which will arrive in near future is similar to the current value. Through the experimental study, we show the efficiency of our proposed method.

A Spatial Data Stream Processing System for Spatial Context Analysis in Real-time (실시간 공간 상황 분석을 위한 공간 데이터 스트림 처리 시스템)

  • Kwon, O-Je;Kim, Jae-Hun;Li, Ki-Joune
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • Spatial data streams from sensors are useful in context-awareness for many types of applications. However, an important gap is found between spatial data stream management in real-time and complex computation for spatial context-awareness, and this brings about serious difficulty to integrate spatial data stream processing and context-awareness. In this paper, we present a system called SCONSTREAM(Spatial CONtext STREAm Management) that we have developed to resolve the gap between spatial data stream and context-awareness. The key approach of our system is to filter off unnecessary spatial data streams and convert them to the spatial context streams, which are smaller and more suitable to be processed by the context-awareness module than raw data from sensors. By experimentation, We show that SCONSTREAM resolves the functional gap between spatial stream processing and spatial context-awareness module.

Development of an Event Stream Processing System for the Vehicle Telematics Environment

  • Kim, Jong-Ik;Kwon, Oh-Cheon;Kim, Hyun-Suk
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.463-465
    • /
    • 2009
  • In this letter, we present an event stream processing system that can evaluate a pattern query for a data sequence with predicates. We propose a pattern query language and develop a pattern query processing system. In our system, we propose novel techniques for run-time aggregation and negation processing and apply our system to stream data generated from vehicles to monitor unusual driving patterns.

A Data Processing Mechanism in Sensor Network Environment (센서 네트워크 환경에서의 데이터 처리 메커니즘)

  • Park, Dae-Hyun;Kim, Young-Jun;Lee, Jeong-Hoom;Chong, Il-Young
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.133-134
    • /
    • 2007
  • The effective data processing mechanism in the sensor network means data stream model and real-time query processing model for real-time processing of stream data. This mechanism can improve satisfaction of users and reduce delay rate of data processing. In this paper, we explain the problem which is occurred when users need to search certain information among information of stream data and describe reduction model of delay rate according to data transmission.

  • PDF

Spatial Operation Allocation Scheme over Common Query Regions for Distributed Spatial Data Stream Processing (분산 공간 데이터 스트림 처리에서 질의 영역의 겹침을 고려한 공간 연산 배치 기법)

  • Chung, Weon-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2713-2719
    • /
    • 2012
  • According to increasing of various location-based services, distributed data stream processing techniques have been widely studied to provide high scalability and availability. In previous researches, in order to balance the load of distributed nodes, the geographic characteristics of spatial data stream are not considered. For this reason, distributed operations for adjacent spatial regions increases the overall system load. We propose a operation allocation scheme considering the characteristics of spatial operations to effectively processing spatial data stream in distributed computing environments. The proposed method presents the efficient share maximizing approach that preferentially distributes spatial operations sharing the common query regions to the same node in order to separate the adjacent spatial operations on overlapped regions.

CONTINUOUS QUERY PROCESSING IN A DATA STREAM ENVIRONMENT

  • Lee, Dong-Gyu;Lee, Bong-Jae;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.3-5
    • /
    • 2007
  • Many continuous queries are important to be process efficiently in a data stream environment. It is applied a query index technique that takes linear performance irrespective of the number and width of intervals for processing many continuous queries. Previous researches are not able to support the dynamic insertion and deletion to arrange intervals for constructing an index previously. It shows that the insertion and search performance is slowed by the number and width of interval inserted. Many intervals have to be inserted and searched linearly in a data stream environment. Therefore, we propose Hashed Multiple Lists in order to process continuous queries linearly. Proposed technique shows fast linear search performance. It can be utilized the systems applying a sensor network, and preprocessing technique of spatiotemporal data mining.

  • PDF

Design and Implementation of a USN Middleware for Context-Aware and Sensor Stream Mining

  • Jin, Cheng-Hao;Lee, Yang-Koo;Lee, Seong-Ho;Yun, Un-il;Ryu, Keun-Ho
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.127-133
    • /
    • 2011
  • Recently, with the advances in sensor techniques and net work computing, Ubiquitous Sensor Network (USN) has been received a lot of attentions from various communities. The sensor nodes distributed in the sensor network tend to continuously generate a large amount of data, which is called stream data. Sensor stream data arrives in an online manner so that it is characterized as high-speed, real-time and unbounded and it requires fast data processing to get the up-to-date results. The data stream has many application domains such as traffic analysis, physical distribution, U-healthcare and so on. Therefore, there is an overwhelming need of a USN middleware for processing such online stream data to provide corresponding services to diverse applications. In this paper, we propose a novel USN middleware which can provide users both context-aware service and meaningful sequential patterns. Our proposed USN middleware is mainly focused on location based applications which use stream location data. We also show the implementation of our proposed USN middleware. By using the proposed USN middleware, we can save the developing cost of providing context aware services and stream sequential patterns mainly in location based applications.

Finding Pseudo Periods over Data Streams based on Multiple Hash Functions (다중 해시함수 기반 데이터 스트림에서의 아이템 의사 주기 탐사 기법)

  • Lee, Hak-Joo;Kim, Jae-Wan;Lee, Won-Suk
    • Journal of Information Technology Services
    • /
    • v.16 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • Recently in-memory data stream processing has been actively applied to various subjects such as query processing, OLAP, data mining, i.e., frequent item sets, association rules, clustering. However, finding regular periodic patterns of events in an infinite data stream gets less attention. Most researches about finding periods use autocorrelation functions to find certain changes in periodic patterns, not period itself. And they usually find periodic patterns in time-series databases, not in data streams. Literally a period means the length or era of time that some phenomenon recur in a certain time interval. However in real applications a data set indeed evolves with tiny differences as time elapses. This kind of a period is called as a pseudo-period. This paper proposes a new scheme called FPMH (Finding Periods using Multiple Hash functions) algorithm to find such a set of pseudo-periods over a data stream based on multiple hash functions. According to the type of pseudo period, this paper categorizes FPMH into three, FPMH-E, FPMH-PC, FPMH-PP. To maximize the performance of the algorithm in the data stream environment and to keep most recent periodic patterns in memory, we applied decay mechanism to FPMH algorithms. FPMH algorithm minimizes the usage of memory as well as processing time with acceptable accuracy.

Efficient Processing of Multidimensional Vessel USN Stream Data using Clustering Hash Table (클러스터링 해쉬 테이블을 이용한 다차원 선박 USN 스트림 데이터의 효율적인 처리)

  • Song, Byoung-Ho;Oh, Il-Whan;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.137-145
    • /
    • 2010
  • Digital vessel have to accurate and efficient mange the digital data from various sensors in the digital vessel. But, In sensor network, it is difficult to transmit and analyze the entire stream data depending on limited networks, power and processor. Therefore it is suitable to use alternative stream data processing after classifying the continuous stream data. In this paper, We propose efficient processing method that arrange some sensors (temperature, humidity, lighting, voice) and process query based on sliding window for efficient input stream and pre-clustering using multiple Support Vector Machine(SVM) algorithm and manage hash table to summarized information. Processing performance improve as store and search and memory using hash table and usage reduced so maintain hash table in memory. We obtained to efficient result that accuracy rate and processing performance of proposal method using 35,912 data sets.

Implementation of Real-time Data Stream Processing for Predictive Maintenance of Offshore Plants (해양플랜트의 예지보전을 위한 실시간 데이터 스트림 처리 구현)

  • Kim, Sung-Soo;Won, Jongho
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.840-845
    • /
    • 2015
  • In recent years, Big Data has been a topic of great interest for the production and operation work of offshore plants as well as for enterprise resource planning. The ability to predict future equipment performance based on historical results can be useful to shuttling assets to more productive areas. Specifically, a centrifugal compressor is one of the major piece of equipment in offshore plants. This machinery is very dangerous because it can explode due to failure, so it is necessary to monitor its performance in real time. In this paper, we present stream data processing architecture that can be used to compute the performance of the centrifugal compressor. Our system consists of two major components: a virtual tag stream generator and a real-time data stream manager. In order to provide scalability for our system, we exploit a parallel programming approach to use multi-core CPUs to process the massive amount of stream data. In addition, we provide experimental evidence that demonstrates improvements in the stream data processing for the centrifugal compressor.