• Title/Summary/Keyword: stream/river environment

Search Result 643, Processing Time 0.026 seconds

Factor Analyses for Water Quality Indicators of Streams, Ground Water, and Reservoir in Agricultural Small Catchments of the Han River Basin

  • Park, C-S;Joo, J-H;Jung, Y-S;Yang, J-E
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.382-393
    • /
    • 2000
  • The principal indicators contributing to water qualities was screened by factor analyses, based on the monitored chemical parameters of water quality for various water resources from 1995 to 1999 in the small agricultural catchments of the Han River Basin. Water samples of streams, groundwaters, and reservoirs were taken four times a year from upper (Daegwanryong), middle (Dunnae and Chunchon) and lower (Guri) reaches of Han River Basin. In these areas, the respective type of farming practiced was alpine agriculture and livestocks raising, typical upland and paddy cultivation, and intensive cropping in the plastic film house. Water quality was monitored for twenty-one water quality parameters, including pH, EC, SS, T-N, T-P, COD, cations, anions, and heavy metals. pH, EC and COD of the stream waters were suitable for the Korea irrigation water quality guidelines. However, T-N and T-P concentrations of water samples in four catchments far exceeded the irrigation water guideline. Concentrations of canons and heavy metals in Wangsuk stream in Guri area were higher than those in streams in other areas. Factor analysis revealed that significant correlation was observed for 81 pairs out of 231 water quality indicators of stream water among the $21\;{\times}\;21$ cross correlation matrix of stream water quality indicators. The first factor accounted for 27.01% of the total variation in stream water quality indicators, and high positive factor loadings were shown on EC, K, Na, $NH_4\;^+-N$, $PO_4\;^{3-}$, $SO_4\;^{2-}$, and COD. Fifty-three water quality indicator pairs were significant out of 190 ground water quality parameters. The first factor accounted for 28.54% of the total variation in ground water quality indicators, and high loadings were revealed on EC, Ca, Mg, K, Na, $NH_4\;^+-N$, and $SO_4$. Twenty-nine pairs of reservoir water quality indicators were significant out of 66 pairs. The first factor accounted for 37.06% of the total variation in reservoir water quality indicators, and high loadings were shown on EC, Mg, K, Na, SS, T-P, Cl, and COD. These results demonstrate that EC was the first factor contributing to water quality.

  • PDF

A Comparative Study of Insect Community at Streamside zones at the Daejeon and Yudeung Streams (대전천과 유등천의 하천변 곤충군집 비교 연구)

  • Lim, Heon-Myoung;Cho, Youngho;Park, Young-Jun;Han, Yong-Gu;Nam, Sang-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.1
    • /
    • pp.30-51
    • /
    • 2013
  • This study was conducted to identify the impact of river improvement efforts by studying terrestrial insects inhabiting at streamside locations at the Daejeon and Yudeung streams. Seven surveys were conducted from April to October on 2008 and the results were analyzed. Totally 428 species of 110 families belonging to 11 orders of insects were investigated during the course of the present study. The insects identified at the Daejeon stream belonged to 335 species, 99 families and 11 orders, while those at the Yudeung stream were of 350 species, with 98 families and 11 orders. At the Daejeon stream, D-1 and D-2 points were the sites where the most species(178 species) were identified, while at the Yudeung stream, the Y-1 point was the site where the most species(179 species) emerged. In a cluster analysis based on a similarity index, Group A(without river improvement works) and Group B(downtown passing area with river improvement works) were created. Within Group A, survey points were classified as the Daejeon stream group(the A-1 Group) and the Yudeung stream group(the A-2 Group). It was found that the emergence patterns of insects were related to regional characteristics of the streams.

Dataset of Long-term Monitoring on the Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (I) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (I))

  • Lee, Chanjoo;Kim, Dong Gu;Ji, Un;Kim, Jisung
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Naeseong Stream is a sand-bed river that flows through the northern area of Gyeongbuk province. It is characterized by dynamic sandy bedforms developed in response to the seasonal hydrological fluctuation and by its unique riverine landscape called "white river." However, changes including construction of Yeongju Dam from 2010 and the extensive vegetation establishment around 2015 occurred along the Naeseong Stream. This paper aims to analyze climate, hydrology, and water quality as factors and to examine the possibility of channel changes accordingly. The second least precipitation during the last 60 years happened in 2015, which led to the lowest peak discharge in 50 years. The sediment characteristics of Naeseong Stream were not significantly different along the upstream and downstream reaches, but it was confirmed that annual minimum water level of the stream decreased continuously regardless of the dam construction. This suggests that intermittent drought and change in water quality are likely to provide favorable conditions for riparian vegetation establishment and the resulting physical changes have affected riverbed degradation. Therefore, it is necessary to conduct diversified monitoring in connection with river vegetation change in order to analyze the causes of river changes.

Probabilistic Monitoring of Effect of Meteorological Drought on Stream BOD Water Quality (기상학적 가뭄이 하천 BOD 수질에 미치는 영향의 확률론적 모니터링)

  • Jiyu Seo;Jeonghoon Lee;Hosun Lee;Sangdan Kim
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.9-19
    • /
    • 2023
  • Drought is a natural disaster that can have serious social impacts. Drought's impact ranges from water supply for humans to ecosystems, but the impact of drought on river water quality requires careful investigation. In general, drought occurs meteorologically and is classified as agricultural drought, hydrological drought, and environmental drought. In this study, the BOD environmental drought is defined using the bivariate copula joint probability distribution model between the meteorological drought index and the river BOD, and based on this, the environmental drought condition index (EDCI-BOD) was proposed. The results of examining the proposed index using past precipitation and BOD observation data showed that EDCI-BOD expressed environmental drought well in terms of river BOD water quality. In addition, by classifying the calculated EDCI-BOD into four levels, namely, 'attention', 'caution', 'alert', and 'seriousness', a practical monitoring stage for environmental drought of BOD was constructed. We further estimated the sensitivity of the stream BOD to meteorological drought, and through this, we could identify the stream section in which the stream BOD responded relatively more sensitively to the occurrence of meteorological drought. The results of this study are expected to provide information necessary for river BOD management in the event of meteorological droughts.

An Application of Physico-Environmental Evaluation System of Stream - Focusing on urban streams - (하천의 물리 환경성 평가체계의 적용 - 도시하천을 중심으로 -)

  • Jung, Hea-Reyn;Kim, Ki-Heung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.1
    • /
    • pp.55-75
    • /
    • 2017
  • The purpose of this study is to present the basic data for restoration of physical stream environment by analyzing habitat variables because habitat environment is changed due to the construction of waterfront space in urban streams. Assessment results of 10 habitat variables(three divisions) were almost same as optimal condition, in the reach of reference stream where there are no stream crossing structures and channel alteration. Assessment results of reaches in urban rivers, where streams were improved on water-friendly recreation activities, appeared to be marginal condition. Because habitat environment got worse due to stream improvement works such as construction of weir for water landscape, stepping stones for walking, low water revetment and high water revetment, and high water channel. In addition, in the case of mid gradient stream, the frequency of riffles was small or not existed because the intervals of the river crossing structures was short. In the case of mild stream types, the diversity of the pool was damaged due to the deposition of sludge in the upstream pool of weir and the installation of low water revetment.

Community Structure of Benthic Macroinvertebrate Affected by Lake Water and Sewage Effluent at Urban Stream in Gwangju, Korea

  • Yoon, Sang-Hoon;Jung, Suk-Kyeong;Seo, Gwang-Yeob;Cho, Young-Gwan
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.3
    • /
    • pp.325-336
    • /
    • 2017
  • The ecosystem in the Gwangju Stream has taken a wide range of disturbance such as the discharging water of sewage treatment plant, the lake water and the river water from different water system over the past decade. This study was figured out some significant influence factors by analyzing the relationship between biotic and abiotic factors in the urban stream. Abiotic components included 15 water quality variables which were measured in five sampling sites along the stream from October 2014 to July 2015, whereas the benthic macroinvertebrates found in those sites were used to estimate various biotic indices representing the ecological status of the community. The results of correlation analyses indicated that abiotic factors by human activities affected on the inhabitation of benthic macroinvertebrates more than biotic factors. The results of cluster analyses and ANOVA tests also showed that biotic and abiotic characteristics were clearly different in season. The main influence factors of cluster analysis by sites were $NH_3-N$, EPT(I) and DO. It was considered that more various statistical analyses would be necessary to find some different relationships and influence factors between biotic and abiotic variables in the urban stream.

Development of a Hybrid Watershed Model STREAM: Model Structures and Theories (복합형 유역모델 STREAM의 개발(I): 모델 구조 및 이론)

  • Cho, Hong-Lae;Jeong, Euisang;Koo, Bhon Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.491-506
    • /
    • 2015
  • Distributed models represent watersheds using a network of numerous, uniform calculation units to provide spatially detailed and consistent evaluations across the watershed. However, these models have a disadvantage in general requiring a high computing cost. Semi-distributed models, on the other hand, delineate watersheds using a simplified network of non-uniform calculation units requiring a much lower computing cost than distributed models. Employing a simplified network of non-uniform units, however, semi-distributed models cannot but have limitations in spatially-consistent simulations of hydrogeochemical processes and are often not favoured for such a task as identifying critical source areas within a watershed. Aiming to overcome these shortcomings of both groups of models, a hybrid watershed model STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model) was developed in this study. Like a distributed model, STREAM divides a watershed into square grid cells of a same size each of which may have a different set of hydrogeochemical parameters reflecting the spatial heterogeneity. Like many semi-distributed models, STREAM groups individual cells of similar hydrogeochemical properties into representative cells for which real computations of the model are carried out. With this hybrid structure, STREAM requires a relatively small computational cost although it still keeps the critical advantage of distributed models.

Evaluation of Diatom Growth Potential in Midstream and DownstreamNakdong River (낙동강 중. 하류에서의 규조류 성장잠재력 평가)

  • Kwon, Young-Ho;Seo, Jung-Kwan;Park, Sang-Won;Yang, Sang-Yong
    • ALGAE
    • /
    • v.21 no.2
    • /
    • pp.229-234
    • /
    • 2006
  • For the test organism of algal growth potential (AGP), the diatom in the genus Stephanodiscus which cause blooms in the Nakdong River was used instead of generally used strains of Selenastrum, Microcystis, or Anabaena. AGP results indicated that all the samples in the Nakdong River except for that from the Nakdan Bridge site were eutrophic state. Furthermore, the sample from Kumho River site was hypertrophic state. In the main stream Nakdong River, the value of AGP was lowest at the upstream Nakdan Bridge site and was highest at Koryoung Bridge site which is just downstream of Kumho River confluent point indicating the seriousness of pollution contributed by the Kumho River to the Nakdong River. Changes in the concentration of nutrients before and after the AGP tests and inter-relationship among the nutrients indicated that the growth of the Stephanodiscus in the AGP tests were mostly affected by the nitrate, silicate and phosphate. The limiting nutrient was identified by the nutrient addition experiments and the results showed that phosphate was the limiting nutrient for the growth of Stephanodiscus in the tested samples.

ESTIMATION OF DAM DISCHARGE FOR THE DOWN STREAM WATER QUALITY

  • Ha, Jin-Kyu;Hong, Il-Pyo
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.51-59
    • /
    • 2002
  • In recent years the human impact on the environment becomes increasing lift threatening, calls for the better management of resources. In field of water quality of river flow, the best way to conserve water quality is specific efforts to control the pollutant loadings and treat the loadings in the basin to reduce the discharge of pollutant loadings to river. But in general the water quality influenced by the dam discharge. Especially in dry season, it is more dominant way to improve the water quality which contaminated with the pollutant loadings from the basin. The dam discharge amounts of the 2 dams in the Keum River that maintain the down stream water quality were estimated for the year of 1999, 2001, 2006, 2011, in case of irrigation and non-irrigation seasons. The pollutant loadings for the basin are estimated with the planning of treatment plants construction schedule for every sub-basins. The river flow rates were considered low flow as 2.33 year low flow and 10 year low flow. The QUAL2E model was used as a tool of simulation.

  • PDF

Vegetation survey in nature-friendly small streams for each protection method (자연형 소하천의 호안공법별 식생분포 조사)

  • Lee, Kang-Suk;Park, Jin-Ki;Yeon, Gyu-Bang;Park, Jong-Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.315-324
    • /
    • 2011
  • Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, stream bank stabilization methods, and stream flow processes are described and interpreted for selected nature-friendly small stream bank protection of Goesan, central Korea. Idong Stream Pilot Project, which began in May 2003 and finished in December 2003, was selected to develop effective methods which was nature-friendly stream bank protection. The project aim to maintain or increase stream bank stabilization ecosystem goods and services while protecting downstream and stream bank ecosystem. A number of protecting methods which were a Flight of fieldstone, Vegetation block, Green river block, Stone net, Green environment block, Eco friendly cobble, Vegetation mat and Geo-green cell and Firefly block were applied on the bank of Idong stream. The stream sites have been monitored about vegetation conditions each method in 2007. We selected six points to separately investigate in left and right bank. The main purpose of this study was to find out suitable methods and to improve stream restoration techniques for ecosystem. On the stream bank, H environment block method (9.7) was the highest average of vegetation coverage and Firefly block method (3.87) was the lowest average in applied methods.