DOI: https://doi.org/10.13087/kosert.2017.20.1.55 ISSN 1229-3032

하천의 물리 환경성 평가체계의 적용*

- 도시하천을 중심으로 -

정혜련¹⁾ · 김기흥²⁾

경남과학기술대학교 토목공학과

An Application of Physico-Environmental Evaluation System of Stream*

- Focusing on urban streams -

Jung, Hea-Reyn¹⁾ and Kim, Ki-Heung²⁾

¹⁾ Dept. of Civil Eng., Graduate school, Gyeongnam National University of Science and Technology,
²⁾ Dept. of Civil Eng., Gyeongnam National University of Science and Technology.

ABSTRACT

The purpose of this study is to present the basic data for restoration of physical stream environment by analyzing habitat variables because habitat environment is changed due to the construction of waterfront space in urban streams.

Assessment results of 10 habitat variables(three divisions) were almost same as optimal condition, in the reach of reference stream where there are no stream crossing structures and channel alteration. Assessment results of reaches in urban rivers, where streams were improved on water-friendly recreation activities, appeared to be marginal condition. Because habitat environment got worse due to stream improvement works such as construction of weir for water landscape, stepping stones for walking, low water revetment and high water revetment, and high water channel. In addition, in the case of mid gradient stream, the frequency of riffles was small or not existed because the intervals

^{*} 본 연구는 국토교통부 물관리연구사업의 연구비지원 (12기술혁신C02)에 의해 수행되었습니다.

First author: Jung, Hea-Reyn, Dept. of Civil Engineering, Graduate school, Gyeongnam National University of Science and Technology,

Tel: 82-55-751-3294, E-mail: mymi69@nate.com

Corresponding author: Kim, Ki-Heung, Dept. of Civil Engineering, Gyeongnam National University of Science and Technology,

Tel: 82-55-751-3294, E-mail: khkim@gntech.ac.kr

Received: 7 December, 2016. Revised: 20 February, 2017. Accepted: 16 February, 2012.

of the river crossing structures was short. In the case of mild stream types, the diversity of the pool was damaged due to the deposition of sludge in the upstream pool of weir and the installation of low water reverment.

Key Words: Habitat variable, Stream crossing structure, Reference stream, Channel alteration

I. 서 론

하천의 수리 및 하도 특성으로 대표되는 물리환경(하도 및 수리 특성)은 생태계 기반으로서수질특성과 더불어 생물에 미치는 영향이 아주크다. 따라서 하천의 물리 환경을 진단하고 평가하고자 할 경우, 하천 상·중·하류의 위치에따른 하도의 지형학적 특성과 유역의 규모에 따른 하천의 규모 및 유량의 크기 등에 따라 하천의 유형을 분류하고 그 유형별 특성에 따라 하천환경의 평가시스템을 구축할 필요가 있다. 이를 위해 하천환경의 평가시스템에서는 하천유형을 구분하는 것이 1차적인 과제이므로 하천 분류체계에 대한 선행연구를 바탕으로 국내 하천의 특성을 반영할 수 있는 하천유형을 구분하는 기준을 마련할 필요가 있다.

하천분류체계에 대한 선행연구는 지형학적 관점에서 유역의 지형과 하천의 진화단계를 기준으로 분류하였으며(Davis, 1899; Horton, 1945; Strahler, 1952), 하천형성과정에서 나타나는 하천의 평면형상을 기준으로 분류하기도 하였다(Leopold and Wolman, 1957; Leopold et al., 1964). 또한 공학적으로는 하천의 형성과정을 지배하는 유수력(stream power)의 관점에서 하천을 분류하기도 하였다((Lane, 1957; Ferguson, 1987; Thorne, 1997). 1980년 후반 이후에는 세계 각국에서 환경보전, 하천복원 및 하천관리 등 하천공학적 관점에서 적용할 수 있는 하천분류체계가 제시되어왔다(Yamamoto, 1988; Montgomery and Buffington, 1993; Rosgen, 1996). 하천분류체계에 따라분류되는 하천유형은 유역과 하천의 위치 및 규모

에 따라 단수 또는 복수로 나타날 수 있다. 하나의 하천유형 내에서도 상류 산지하천의 경우에는 폭 포(cascade), 계단상 하상(step-pool bed) 및 평탄하 상(plane bed)이 나타나고, 중·하류의 충적하천 에서는 여울-소 (riffle-pool)와 사주 등이 형성되기 때문에 반복적으로 나타나는 하도지형의 특성을 고려하여 평가할 수 있는 기준도 필요하다. 또한, 하천의 물리환경 평가시스템에서는 동식물 서식 의 기반이 되는 하천의 하도지형 및 수리 특성을 반영할 수 있어야 한다. 1990년대 이후 선진국들 은 정성적 또는 정량적인 하천의 서식환경 평가시 스템을 구축하여 적용하고 있다. 대표적으로 정량 적 평가시스템을 운영하는 국가는 독일(LAWA, 2004)과 미국(EPA, 2004)이고, 정성적 평가시스템 을 운영하는 국가는 영국(SEPA, 2003)이며, 호주 의 Aus RivAS (Parsons et al., 2002)는 영국과 미국 의 평가시스템을 통합하여 자국에 맞는 시스템을 운영하고 있다. 독일(LAWA, 2004)의 평가체계는 하천의 물리적 구조 수준이 생태적 수준을 나타내 는 척도라는 개념에서 하천구조와 그에 관련되는 역동적인 수리 및 하도지형의 특성을 나타내는 영역으로서 종적 특성, 종단면, 횡단면, 하상구조, 하안구조 및 하천변(토지이용) 등 6개 영역에서 24개 항목을 평가하여 7개 등급으로 하천의 물리 구조 상태를 나타낸다. 미국(EPA, 2004)의 평가체 계는 하천의 서식처 수준은 하도에서 수생태의 구조와 기능에 영향을 미치는 하도 및 하천변에서 서식처의 질이 결정된다는 것을 전제로 수리 및 하도특성을 나타내는 하상재료 및 유효서식처, 유 속-수심 조합, 유사퇴적, 하도흐름 상태, 하도개수, 여울출현 빈도 및 사행도, 하안안정도, 하안식생

및 수변 식생대 등 10개 항목을 4개 등급으로 평가 하여 하천의 서식처 상태를 나타낸다.

한편, 국내에서는 하천환경의 개선 및 보전에 대한 수요의 증가에 따라 중앙정부 및 각 지방 자치단체는 하천복원사업을 경쟁적으로 추진하고 있으나, 하천환경의 현황 특히, 생태계 기반인 하천의 물리적 특성(구조)에 대한 평가 및 진단 절차를 거치지 않은 사례가 대부분이다. 또한 지금까지는 하천의 자연도 평가 연구 등에서 선진국들의 하천환경평가시스템을 여과 없이 적용함으로써 국내의 하천특성을 제대로 반영하지 못하는 한계를 가지고 있다(Kim et al., 1999; KICT, 2007; Park et al., 2005; Kim, 2008; Kim, 2009).

하천의 물리적 특성 즉, 수리 및 하도 특성 평가의 목적은 하천기본계획 수립과 하천복원사업의 실행과정에 있어 기본방향의 설정 및 통합적 평가기준으로서 사업의 성공여부를 평가하고, 또한 하천이용과 보전, 나아가 복원계획에 대한 잠재적인 적합성의 근거를 파악하고 그 기준을 제시하는데 있다.

본 연구에서는 하천의 물리환경 평가시스템의 적용성을 검토하기 위하여 하천의 물리환경 평가시스템 구축을 위한 선행연구(Kim and Jung, 2015; Kim et al., 2016)를 바탕으로 하천 유형을 분류하고, 분류된 동일 하천유형 내에서도 저수로 폭을 기준으로 구분된 평가단위 구간에 대해서 평가항목 및 지표를 적용하는 방안을 제시하였다. 따라서 하도경사 및 하상재료 등의특성이 유사한 자연하천 구간과 도시하천 구간에서 하천의 물리환경 평가시스템을 적용하여그 결과를 검토 및 분석하여 하천의 물리환경 평가시스템의 적용 가능성을 평가하였다.

Ⅱ. 연구 범위와 방법

1. 연구범위

본 연구의 조사범위는 교란하천(disturbed

stream)으로서 대전시를 관류하는 도시하천인 갑천과 유등천을 선정하였으며, 대조하천(reference stream)은 자연하천에 가까운 남강댐 상류구간을 선정하여 현장조사 및 평가를 수행하고 그 결과를 기초로 분석하였다. Figure 1 및 Table 1은 연구대상하천의 위치 및 조사구간을 나타낸것이다.

갑천은 대전광역시 유성구 봉산동 금강 합류점에서 서구 용촌동 두계천 합류점까지의 국가하천 33.53km 구간이며, 유등천은 대전광역시대덕구 대화동 갑천 합류점에서 중구 금산군 경계의 국가하천 15.53km, 중구 금산군 경계에서 금산군 진산면 부암리 부암교(신)까지 지방하천 22.07km의 구간이다. 남강은 남강댐 상류의 양천 합류부에서 함양위천 합류부까지 연장 39.5km구간이다.

2. 연구방법

1) 연구방법

본 연구에서는 한국 하천의 하도 및 수리 특성을 반영한 하천의 물리환경 평가시스템의 적용성을 검토하는 것이다. 선행 연구에서는 독일, 영국, 미국, 호주 및 일본 등에서 적용하고 있는 하천의 분류체계를 검토하였으며, 하상경사와하상재료 입경을 기준으로 Rosgen(1996)과 Yamamoto (1988)의 분류체계를 비교한 결과를 Figure 2 및 Figure 3에 제시하였다(Kim and Jung, 2015). Figure 2 및 Figure 3에 나타낸 바와같이 하상경사 및 하상재료 입경을 기준으로 분류한 결과에 따르면 Yamamoto 하천분류체계가 Rosgen 하천분류체계 보다 하상경사 변화에 따른 하도의 종단적 연속성 및 토사분급을 명확하게 구분할 수 있는 장점이 있어 이 방법(Table 2 참조)을 적용하였다.

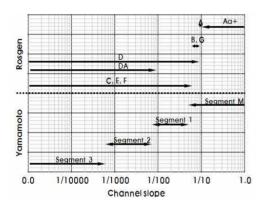

세구간(reach)으로 정의한 평가 단위구간의 선정은 문헌을 바탕으로 자연하천에서 나타나 는 여울-소의 출현빈도인 저수로 폭 대비 여울

Figure 1. Location map of study area

Table	1.	Surveyed	rivers	in	study	area.

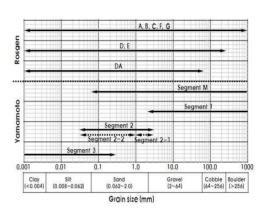

Stream name	Location	Length of survey reach (km)
Namgang	Hamyang-gun and Sancheong-gun, Gyeongsangnam-do	National river : 39.5km
Gapcheon	Daedeok-gu, Yuseong-gu and Seo-gu, Daejeon city	National river : 33.53km
Yudeungcheon	Daedeok-gu and Jung-gu, Chungcheongnam-do Geumsan-gun, Daejeon city	National river: 15.53km Local stream: 22.07km

Figure 2. Comparison of Rosgen (1994) system and Yamamoto (1988) system of channel slope(Kim and Jung, 2015).

간 거리의 비가 1:5~7인 점을 고려하였으며, 직강화 등 교란하천의 정도를 반영한 1:25를 적용하였다. 평가 단위구간을 추출하기 위해서 는 하천기본계획상의 횡단도를 이용하여 저수 로 폭을 구한 후 중경사, 완경사 하천은 평균 저 수로 폭의 25배를 세구간으로 하였으며, 급경사 하천은 평균 저수로 폭의 10배를 세구간으로 하 였다. 세구간의 분할은 수치지형도와 항공사진 을 중첩시켜 여울-소, 만곡도(사행도) 등을 추출 하여 구할 수 있다.

평가체계는 1차적으로 평가의 공간적 규모를 구분하기 위하여 하천유형을 하상경사를 기준으로 3개의 하천유형(segment)으로 분류하고, 저수로 폭과 여울 간 거리의 비를 기준으로 세구간

Figure 3. Comparison Rosgen (1994) system with Yamamoto (1988) system of grain size (Kim and Jung, 2015).

(reach)를 나눈 후, 2차적으로 각 하천유형에 대하여 3개 영역 10개 평가지표를 5개 등급으로 구분하여 평가하는 것으로 구성하였다.(Appendix 참조). 특히, 하천유형 분류에 따른 하도특성은 하상경사 1/60 이상인 급경사 하천(high-gradient stream)에서는 계단상(step-pool)의 연속성, 1/60~1/400인 중경사 하천(mid-gradient stream)에서는 급여울-소(riffle-pool)의 연속성에 중점을 두었으며, 1/400~1/5,000인 완경사 하천(low-gradient stream)에서는 평여울-소(run-pool)의 연속성과 소의 다양성에 중점을 두고 평가하는 시스템으로 구축하여, 미국 EPA 및 독일 LAWA의문제점을 보완하였다.

하천환경의 수리 및 하도특성 평가에 대한 이

력을 파악하기 위하여 수집 가능한 과거의 모든 항공사진을 이용하여 하도의 물리적 구조를 나타내는 하천특성과 저수로, 고수부, 제방 등의 하천정비 현황 등을 조사하였으며, 국립지리정보원의 국토공간영상정보 DB와 국가수자원관리종합정보 DB의 하천기본계획 보고서를 통하여 간접 평가를 실시하였다. 하천 지형특성과현황에 대한 현장조사 항목은 수리 및 하도영역의 6개 항목, 하안영역의 2개 항목, 하천교란 영역 2개 항목으로 3개 영역이며, 수리 및 하도 영역의 ①유효서식처, ②하상매몰도와 소의 하상재료, ③유속・수심 및 소의 다양성 등은 평가단위구간에서 표본조사를 실시하였고, ④유사

퇴적, ⑤하도 흐름상태, ⑥여울 출현빈도 및 사행도 등은 평가 단위 구간별로 전수조사를 실시하였다. 또한, 하안 영역의 ①하천횡단형상, ②하안 안정도 및 하천교란 영역의 ①하도개수, ②하천횡단구조물 등도 평가 단위 구간별로 전수조사를 실시하였다. 3개 영역 10개 평가항목 선정은 미국 EPA와 독일의 LAWA의 평가항목 중에서 공통항목을 우선적으로 추출하고, 우리나라의 하천이용 상황을 반영하기 위하여 하천 횡단형상, 하도개수 및 하천횡단구조물 등을 추가하여 보완하였다.

또한 평가기법은 미국 EPA의 기법을 참고하여 4등급을 5등급으로 나누었으며, 자연하천인

Table 2. Classification of segments (Yamamoto, 2004).

	G		0 1	Segment 2			g 2		
Category	Segment M		Segment 1		-1	2-2	Segment 3		
	Mountainous Region	on	Alluvial fan						
			Val	ley pl	ain				
Morphological type]		al bank gion			
							Delta		
Representative grain size	Variable		1-3	cm	0.03-1 cm	< 0.3 mm			
Structural materials in bank	In many cases, the bedrocks are exposed to the channel and banks.	placed but the the	d and silt are l on the surface, the thickness is inner. Bank ials are same as bed material.	as b	ed m and, s	ver is same aterials as silt and clay ture.	Silt clay		
Channel slope	>1/60(variable)		1/60-1/400	1/400-1/5000			1/5000-Level		
Sinuosity	Variable		ndering sections are a few ongitudinally.	freque widt greate	width/depth ratio greater where ther s-shaped meanders		Meanders are frequently, but chann width/depth ratio is greater where there s-shaped meanders of islands		Simposity is various
Erosion in bank	Very changeable.	Ver	Very changeable.		rials and well well	e, if bed are coarse, idth would ngeable ently.	Infinitesimal, channel is not changeable substantially.		
Mean depth in channel	Variable		0.5-3 m		2-8	3 m	3-8 m		

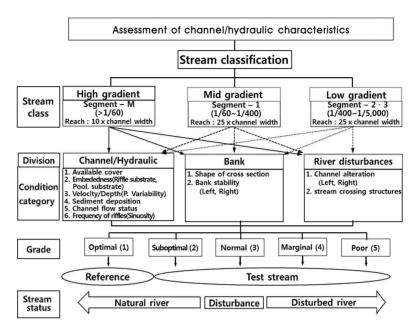


Figure 4. Flowchart of study process(Kim and Jung, 2015)

참조하천(reference stream)을 기준으로 하였다. 이러한 단계별 조사 및 분석과정으로 하천의 물 리적 환경평가 절차는 Figure 4와 같다.

III. 결과 및 고찰

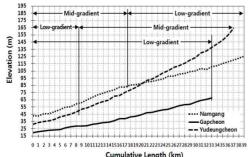
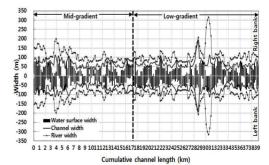
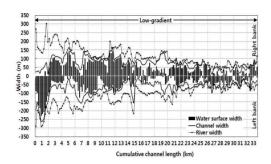
1. 하천유형 분류 및 평가단위구간의 선정

하천의 지형은 수계의 분수령을 경계로 상류 산지구간에서는 계단상의 폭포(cascade), 계단 상의 소(step-pool)와 평탄하상(plane bed)의 순 서로 형성되고, 충적지(alluvial zone)의 중ㆍ하 류 평야구간에서는 여울-소(riffle-pool) 및 사구-사련(dune-ripple)의 순서로 나타나는 것이 일반 적인 특성이다(Montgomery et. al., 1997). 하천 지형에 영향을 미치는 주요 인자는 하폭, 수심, 경사, 유속, 유량, 흐름 저항, 하상재료 입경 및 유사량 등으로 규정하고 있다(Leopold et al., 1964) 이러한 하천지형 특성은 유량과 경사를 매개변수로 하는 유수력(stream power)에 의하 여 지배되며, 유수력에 의한 반응으로서 하상재 료 입경이 결정된다. 본 연구에서는 현재 개발 중인 하천의 물리환 경평가시스템의 적용성을 검토하기 위하여 대조하천 남강을 기준으로 비교하천인 갑천 및 유등천에 대한 조사 및 평가를 실시하였다. Yamamoto의 하천분류체계를 적용한 결과 남강과 유등천은 Segment 1과 2로 분류되었으며, 갑천은 Segment 2로 분류되었다. 조사 및 평가 단위구간은 저수로폭의 25배를 1개 Reach로 산정한 결과, 남강은 11개 Reach, 갑천은 8개 Reach 및 유등천은 15개 Reach로 나누어졌다. Table 3은 남강, 갑천 및 유등천에 대한 하천유형, Reach 수 및 평균저수로폭을 나타낸 것이다. 여기서, (No.)는 각 하천의하천기본계획의 측점을 나타낸 것이다.

Figure 5는 3개 대상하천의 최심하상을 기준으로 하천유형 분류와 종단변화를 나타낸 것으로서 하천의 물리환경평가를 위하여 제1단계의하천유형을 분류한 것이다. Figure 6~Figure 8은 하폭, 저수로 폭 및 수면 폭의 변화를 나타낸 것으로서 하천의 물리환경평가를 위한 제2단계로서 평가단위구간인 Reach를 산정하기 위한기초자료로 활용된다.

Table 3. Stream type, channel width and reach length in each stream.

Divor namo	People location (No.) (m)	Channe	el slope	Segment	Average width	Reach	Reach
River name	Reach location (No.) (III)	Reach slope	Average slope	Segment	of channel (m)	length (m)	No.
	0,000~3,400 (No.209~226)	1/2,000~254		1	135	3,400	1
	3,400~7,560 (No.226~247)	1/604~438		1	157	4,160	2
	7,560~10,520 (No.247~261)	1/488~407	1/389	1	99	2,960	3
	10,520~14,230 (No.261~279)	1/433~369		1	128	3,260	4
	14,230~16,840 (No.279~292)	1/420~392		1	116	3,010	5
Namgang	16,840~20,110 (No.292~308)	1/440~407		2	128	3,270	6
	20,110~23,400 (No.308~324)	1/483~418		2	125	3,290	7
August 16,840 (No.226 ~ 24 7,560 ~ 10,520 (No.247 ~ 26 10,520 ~ 14,230 (No.261 ~ 27 14,230 ~ 16,840 (No.279 ~ 29 16,840 ~ 20,110 (No.308 ~ 32 23,400 ~ 26,510 (No.340 ~ 36 31,160 ~ 35,900 (No.363 ~ 38 35,900 ~ 39,540 (No.386 ~ 40 0,000 ~ 4,955 (No.0+000 ~ 4,955 ~ 10,925 (No.4+955 ~ 10,925 ~ 15,045 (No.10+925 ~ 15,045 ~ 18,530 (No.15+045 ~ 18,530 ~ 22,670 (No.18+530 ~ 22,670 ~ 25,850 (No.22+670 ~ 25,850 ~ 29,090 (No.3490 ~ 4,005 ~ 8,390 (No.4+005 ~ 8,390 ~ 11,390 (No.1+390 ~ 11,390 ~ 14,800 (No.11+390 ~ 11,390 ~ 14,800 (No.11+390 ~ 11,390 ~ 14,800 (No.12 ~ No. 11,390 ~ 14,800 (No.12 ~ No. 21,000 ~ 23,200 (No.28 ~ No. 23,200 ~ 25,200 (No.28 ~ No. 23,200 ~ 25,200 (No.39 ~ No. 25,200 ~ 29,200 (No.49 ~ No. 29,200 ~ 31,200 (No.69 ~ No. 31,200 ~ 33,400 (No.79 ~ No. 33,400 ~ 35,200 (No.90 ~ No. 11,500 ~ 13,400 (No.67 ~ No. 11,200 ~ 31,200 (No.69 ~ No. 31,200 ~ 31,200 (No.69 ~ No. 31,200 ~ 35,200 (No.90 ~ No. 31,200 ~ 35,	23,400~26,510 (No.324~340)	1/468~445	1/520	2	115	3,110	8
	26,510~31,160 (No.340~363)	1/438~456	1/320	2	167	4,650	9
	31,160~35,900 (No.363~386)	1/489~469		2	177	4,740	10
	35,900~39,540 (No.386~404)	1/480~464		2	110	3,640	11
	0,000~4,955 (No.0+000~4+955)	1/2,800~628		2	194	4,955	1
	4,955~10,925 (No.4+955~10+925)	1/1,500~866		2	184	5,970	2
	10,925~15,045 (No.10+925~15+045)	1/1,100~865		2	147	4,120	3
G 1	15,045~18,530 (No.15+045~18+530)	1/900~831	11665	2	93	3,485	4
Gapeneon	18,530~22,670 (No.18+530~22+670)	1/850~750	1/665	2	108	4,140	5
	22,670~25,850 (No.22+670~25+850)	1/785~712		2	101	3,180	6
	25,850~29,090 (No.25+850~29+090)	1/749~692		2	75	3,240	7
	29.090~33510 (No.29+090~33+510)	1/714~654		2	65	4,420	8
	0,000~4,005 (No.0+000~4+005)	1/670~199		2	127	4,005	1
	4,005~8,390 (No.4+005~8+390)	1/460~420	1,450	2	78	4,385	2
	8,390~11,390 (No.8+390~11+390)	1/440~380	1/452	2	68	3,000	3
	11,390~14,800 (No.11+390~14+800)	1/400~380		2	71	3,410	4
	14,800~16,600 (No.14+800~No.6)	1/400~370		1	45	1,800	5
	16,600~17,800 (No.6~No.12)	1/400~370		1	45	1,200	6
	17,800~19,400 (No.12~No.20)	1/377~360		1	37	1,600	7
Yudeungcheon	19,400~21,000 (No.20~No.28)	1/370~347		1	38	1,600	8
	21,000~23,200 (No.28~No.39)	1/350~344		1	40	2,200	9
	23,200~25,200 (No.39~No.49)	1/346~335	1/247	1	40	2,000	10
	25,200~29,200 (No.49~No.69)	1/334~324		1	42	4,000	11
	29,200~31,200 (No.69~No.79)	1/325~313		1	37	2,000	12
	31,200~33,400 (No.79~No.90)	1/318~307		1	31	2,200	13
	33,400~35,200 (No.90~No.99)	1/308~299		1	21	1,800	14
	35,200~37,600 (NO.99~No.111)	1/297~274		1	16	2,400	15

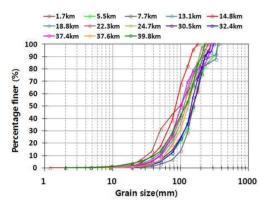

Figure 5. Longitudinal changes of minimum channel elevation in three streams.

Figure 6. Longitudinal changes of river width, channel width and water surface width in Namgang.

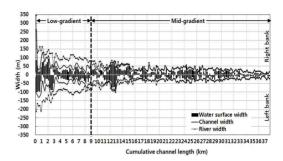

Figure 7. Longitudinal changes of river width, channel width and water surface width in Gapcheon.

Figure 9. Grain size distributions of bed materials in Namgang.

Table 4. Grain size distributions of bed materials in Namgang.

Location	D50	D60	Max.	
(km)	(mm)	(mm)	(mm)	
1.7	100	129	229	
5.5	166	178	339	
7.7	162	177	336	
13.1	130	146	336	
14.8	85	94	176	
18.8	105	128	207	
22.3	120	135	203	
24.7	130	143	203	
30.5	163	195	267	
32.4	150	165	288	
37.4	103	120	274	
37.6	138	152	220	
39.8	128	147	224	
Mean	123.2	140.2	236.8	

Figure 8. Longitudinal changes of river width, channel width and water surface width in Yudeung-cheon.

Figure 9~Figure 11 및 Table 4~Table 6은 남 강, 갑천 및 유등천에 대한 여울 지점의 하상재료 조사결과를 나타낸 것이며, 그림 중의 거리는 하천기본계획의 시점으로부터 상류방향으로 하상재료 조사지점을 나타낸 것이다. 하상재료조사 및 분석은 1m×1m 면격자에 대한 하상표면을 디지털 카메라로 촬영하여 화상해석을 수행하였으며, 화상을 정사한 후 화상처리기법으로 하상재료의 경계를 설정하여 확인한 후 경계가 불확실한 부분에 대해서는 사진을 중첩시켜인위적으로 분할하였다(Kim et al., 2016). 대조하천인 남강의 하상재료 평균입경은 120mm 이상의 작은 호박돌이 분포되어 있고, 갑천은 30mm, 유등천은 22mm 이상의 굵은 자갈이 분포되어 있다.

2. 하천의 물리환경 평가

본 연구에서 제시하는 물리환경의 평가체계는 하천유형에 따라 평가구간 단위인 세구간 (reach)의 규모와 평가항목이 다르게 구성되어 있는 것이 특징이다. 세구간의 크기는 급경사하천의 경우 저수로 폭의 10배이며, 중경사 및 완경사 하천의 경우 저수로 폭의 25배를 기준으로 하고 있다.

하천 물리환경의 평가항목은 하도의 종단적 특성 변화를 반영하여 경사에 따라 다르게 구성 되어 있다. 산지의 급경사 하천의 경우 전석 등

Table 5.	Grain	size	distributions	of	bed	materials	in
	Gapel	neon.					

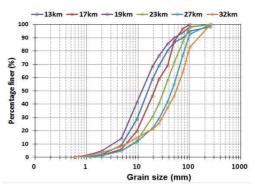
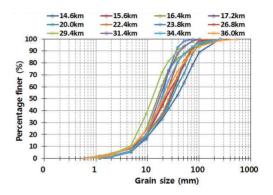

Location	D50	D60	Max.
(km)	(mm)	(mm)	(mm)
13	16	20	126
17	20	29	196
19	13	17	174
23	31	40	111
27	46	57	141
32	55	70	190
Mean	29.3	37.2	124.7

Table 6. Grain size distributions of bed materials in Yudeungcheon.


Location	D50	D60	Max.
(km)	(mm)	(mm)	(mm)
14.6	35	46	176
15.6	22	30	127
16.4	16	20	157
17.2	28	35	139
20.0	30	38	165
22.4	28	34	106
23.8	19	21	62
26.8	20	26	127
29.4	14	16	87
31.4	18	20	94
34.4	19	24	163
36.0	20	26	289
Mean	24.9	30.8	116.9

의 하상재료로 형성된 계단상의 step-pool의 구조, 충적지의 중경사 하천은 자갈과 모래 등의 하상재료로 형성된 여울-소의 구조를 중심으로 수리 및 하도의 수문지형(hydromorphology) 특성을 반영하고 있다. 또한 완경사 하천은 모래 또는 점토 등의 하상재료로 형성된 사주와 소의다양성을 반영하고 있다.

3개 하천유형은 급경사, 중경사, 완경사의 하천유형이고 3개 영역은 하도 및 수리, 하안, 하천교란 영역이며, 10개 항목은 3개의 하천유형에 따라 유효서식처, 하상매몰도 및 소의 하상재료, 유속·수심 및 소의 다양성, 하상안정, 하도흐름상태, 여울출현빈도 및 사행도, 하천횡단형성, 하안안

Figure 10. Grain size distributions of bed materials in Gapcheon.

Figure 11. Grain size distributions of bed materials in Yudeungcheon.

정도, 하도개수, 하천횡단구조물 등의 정량적 평가지표이다. 생물서식처 기반에 따라 평가점수는 평가총점의 평가항목 수를 나눈 값에서 1등급은 최적(1등급)상태의 20~18≥점, 우수(2등급)상태의 18>~14≥점, 보통(3등급)상태의 14>~8≥점, 한계(4등급)상태의 8>~4≥점, 미흡(5등급)상태의 4>점으로 등급을 산정하였다. 하천의하도 및 수리특성은 하천유형에 따라 다르기 때문에 본 연구에서는 대상하천의 하천유형을 중경사 하천(Mid gradient stream)과 완경사 하천(Low gradient stream)으로 구분하여 평가하였다.

1) 중경사(Mid gradient) 하천구간

Figure 12~Figure 13 및 Table 7~Table 8은 남강과 유등천의 하천에 물리환경을 중경사로 분 류하고 평가한 결과이다. 대조하천인 남강의 Reach No.1~Reach No.3 구간과 유등천의 Reach No.3~Reach No.15 구간을 평가하고 그 결과를 비교하였다. 남강의 Reach No.2 구간은 산지 협곡구간으로서 하천교란이 거의 없기 때문에 전체적으로 대조하천(1등급)의 특성을 잘 나타내고 있는 반면에 Reach No.1 및 Reach No.3 구간은 하류의 농경지 및 전원주택 개발지가 산재하고 있어하천교란과 관련된 영역에서 다소 감점요인이 있

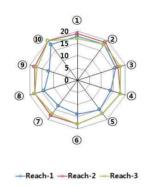


Figure 12. Assessment results of Namgang.

Table 7. Assessment results of Namgang.

		Mid-gradient Reach No.							
Category	Habitat parameter								
		1	2	3	Mean				
Channel and	① Available cover	18	19	17	18				
hydraulic	② Riffle substrate	18	19	18	18				
characteristics	③ Velocity/depth	16	17	18	17				
Bank	Sediment deposition	14	18	18	17				
	⑤ Channel flow status	15	17	17	16				
	6 Frequency of riffles	14	18	18	17				
Disturbance	7 Cross-section shape	13	18	17	16				
Disturbance	8 Bank stability	14	18	18	17				
	9 Channel alteration	12	18	17	16				
	Stream crossing structures	18	20	20	19				
	Score	82	92	91	86				
(Grade)	(2)	(1)	(2)	(2)				

으나 우수(2등급)한 것으로 평가되었다. 유등천은 Reach No.3 구간인 도시구간에서 한계(4등급)으로 나타났고, Reach No.4~Reach No.15 구간은 보통(3등급)으로 평가되었다.

Figure 12 및 Table 7은 남강의 평가결과를 나 타낸 것으로서 우수(2등급 이상)한 것으로 나타 났다. 남강은 대상구간 최하류인 Reach No.1 구간 에 보가 1개소 설치되어 있고, 제방이 좌 · 우안에 부분적으로 설치되어 있어 우수(2등급)로 평가되 었다. Reach No.2 및 Reach No.3 구간은 하천횡단 구조물이 없고 굴입하도를 형성하고 있어 자연하 천에 가까운 특성을 가지고 있기 때문이다. Figure 13 및 Table 8은 유등천의 평가결과를 나타낸 것 으로서 전체적으로 보통(3등급) 상태이나 최하류 구간에서는 한계(4등급)상태로 나타났다. 한계(4 등급)상태에 가까운 Reach No.3 구간은 도시구간 으로서 징검다리 겸용 하상유지공 및 보가 3개소 에 설치되어 있고 대대적인 하천정비로 하천교란 이 심한 것으로 평가되었다. Reach No.4~Reach No.15 구간은 제방축제로 인하여 정형화된 단면 구간이 대부분일 뿐 아니라 농업용수 취수보가 설치되어 정체수역이 많아 보통(3등급)상태로 평 가되었다.

2) 완경사(Low gradient) 하천구간

Figure 14~Figure 16 및 Table 9~Table 11 은 남강, 갑천 및 유등천에 하천의 물리환경을

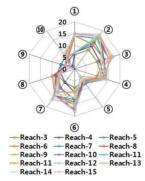


Figure 13. Assessment results of Yudeungcheon.

								Mid am	diant						
_		Mid-gradient													
Category	Habitat parameter	Reach No.													
		3	4	5	6	7	8	9	10	11	12	13	14	15	Mean
	① Available cover	6.0	7.0	7.0	14.0	14.0	15.0	7.0	7.0	15.0	7.0	15.0	14.0	15.0	9.0
CI 1 1	② Riffle substrate	10.0	12.0	14.0	13.0	16.0	17.0	16.0	18.0	18.0	18.0	18.0	18.0	17.0	11.0
Channel and	3 Velocity/depth	10.0	11.0	13.0	13.0	15.0	15.0	13.0	13.0	16.0	15.0	15.0	12.0	17.0	13.7
hydraulic characteristics	4 Sediment deposition	12.0	13.0	14.0	10.0	11.0	11.0	13.0	14.0	13.0	14.0	11.0	11.0	12.0	12.2
Characteristics	(5) Channel flow status	4.5	6.0	4.5	6.5	6.6	5.0	5.0	7.5	6.0	7.0	5.0	5.4	4.0	5.6
	6 Frequency of riffle	8.0	10.0	14.0	15.0	13.0	17.0	16.0	13.0	10.0	18.0	15.0	12.0	18.0	13.8
Bank	7 Cross-section shape	7.0	7.0	14.0	14.0	14.0	14.0	10.0	10.0	12.0	14.0	16.0	13.0	12.0	12.1
Dalik	8 Bank stability	8.0	6.0	8.0	9.8	8.4	8.4	7.0	8.0	7.0	7.0	7.0	6.0	6.0	7.4
	9 Channel alteration	2.0	6.0	6.0	4.0	4.0	4.0	2.0	2.0	2.0	2.0	4.0	2.0	2.0	3.2
Disturbance	① Stream crossing structures	1.4	1.4	6.4	4.8	7.0	5.6	5.6	4.2	5.4	6.4	7.2	8.0	6.4	5.4
	Score	70.5	82	99.5	105.3	109	114.4	98	102.5	110	114	119	107.4	118	88.0
(Grade)	(4)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)

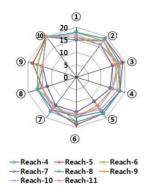


Figure 14. Assessment results of Namgang.

Table 9. Assessment results of Namgang.

완경사로 분류하고 평가한 결과이다. 대조하천 인 남강의 Reach No.4~Reach No.11 구간, 갑 천의 Reach No.1~Reach No.8 구간 및 유등천 의 Reach No.1~Reach No.2 구간을 평가하고 그 결과를 비교하였다.

Figure 14 및 Table 9는 남강의 평가결과를 나타낸 것이다. Reach No.4~Reach No.11 구간은 양안이 곡저평야를 형성하고 있어 평가단위구간 내에 부분적으로 제방이 축제되어 있어 평가지표 중 하천단면 형상, 하도개수 및 하안안

		Low-gradient													
Category	Habitat parameter					Reach 1	No.								
Category Channel and hydraulic characteristics Bank Disturbance			5	6	7	8	9	10	11	Mean					
	① Available cover	15	18	18	16	18	16	17	16	17					
Channal and	② Pool substrate	18	19	18	16	19	16	16	18	18					
	③ Pool Variability	17	19	17	15	18	17	18	16	17					
•	4 Sediment deposition	18	18	18	14	18	15	15	17	17					
characteristics	⑤ Channel flow status	17	18	18	12	18	14	15	16	16					
	6 Channel sinuosity	16	19	18	14	18	16	16	15	17					
Doub	7 Cross-section shape	16	16	14	14	17	15	15	16	15					
Dank	8 Bank stability	16	14	16	12	16	14	14	14	15					
Disturbance	Schannel alteration	16	18	16	14	14	14	14	14	15					
Disturbance	10 Stream crossing structures	20	20	20	20	20	20	20	20	20					
Score		153	164	159	134	164	146	150	153	147					
	(Grade)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)					

정에서 하천교란으로 인한 감점 요인이 있었으나 하도 및 수리 특성 영역에서는 우수(2등급) 상태 이상으로 평가되었다. 특히, Reach No.7 구간은 산청읍내의 관류구간으로서 친수활동을 위한 하천정비로 인하여 다른 구간에 비하여 상대적으로 교란이 심한 편에 속한다.

Figure 15 및 Table 10은 갑천의 평가결과를 나타낸 것이며 보통(3등급)상태 이하인 것으로 나타났다. 갑천은 대상구간 내에는 24개의 하상유지공, 보 및 징검다리 등의 하천횡단구조물이 평균 1.4km 간격으로 설치되어 있어 정체수역이 형성되어 있을 뿐 아니라 하도개수로 인하여하천교란이 심한 것으로 나타났다. 특히, 전민보~진잠천 합류부 구간은 높이가 높은 보가 연

속적으로 설치되어 있고, 고수부지가 조성되어 있으며, 저수호안은 콘크리트 블록 및 옹벽이 설치되어 있다. 따라서 상대적으로 주거지역이 밀집된 평가단위 구간(Reach No.3)은 한계(4등급)상태로 평가되었다.

Figure 16 및 Table 11는 유등천 하류의 평가결과를 나타낸 것으로서 한계(4등급)상태로 나타났다. Reach No.1~Reach No.3 구간은 23개소의 하천횡단구조물이 설치되어 있으며, 갑천의 도룡가동보의 배수위 영향구간과 유등천의하천횡단구조물에 의하여 형성된 정체수역이많고, 하도 중심부에 부분적으로 사주가 형성된구간도 있다. 또한, 하천횡단구조물에 의하여형성된 소(pool)는 면적과 수심의 다양성은 떨

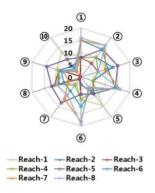


Figure 15. Assessment results of Gapcheon.

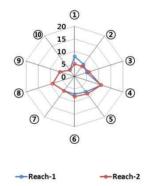


Figure 16. Assessment results of Yudeungcheon.

Table 10. Assessment results of Gapcheon.

		Low-gradient													
Category	Habitat parameter]	Reach N	lo.								
		1	2	3	4	5	6	7	8	Mean					
	① Available cover	8.0	8.0	8.0	8.0	8.0	15.0	15.0	16.0	10.8					
Channel and	② Pool substrate	10.0	10.0	7.0	10.0	14.0	14.0	16.0	16.0	12.1					
hydraulic	③ Pool Variability	11.0	13.0	7.0	7.0	15.0	11.0	10.0	7.0	10.1					
	4 Sediment deposition	5.0	5.0	5.0	5.0	14.0	14.0	16.0	16.0	10.0					
characteristics	5 Channel flow status	14.4	8.0	8.5	7.5	8.4	7.0	5.5	5.0	8.0					
	Available cover 8.0 8.0 Pool substrate 10.0 10.0 Pool Variability 11.0 13.0 Sediment deposition 5.0 5.0 Channel flow status 14.4 8.0 Channel sinuosity 9.0 3.0 Cross-section shape 3.0 1.0 Bank stability 10.8 9.0 Channel alteration 10.0 9.0	7.0	9.0	7.0	12.0	18.0	19.0	10.5							
Doule	7 Cross-section shape	3.0	1.0	1.0	4.0	13.0	7.0	11.0	9.0	6.1					
Bank	8 Bank stability	10.8	9.0	10.8	9.6	12.0	7.0	5.0	10.0	9.3					
District on the second	9 Channel alteration	10.0	9.0	9.0	9.0	14.0	8.0	7.0	7.0	9.0					
Disturbance	10 Stream crossing structures	12.6	5.6	0.6	3.2	9.0	4.2	2.8	3.6	5.2					
	Score	82.2	68	66.3	73.1	110.4	101	110.5	113	85.9					
	(Grade)	(3)	(3)	(4)	(3)	(3)	(3)	(3)	(3)	(3)					

Table 11. Assessment results of Yudeungcheon.

		Lo	ow gradie	ent
Category	Habitat parameter	I	Reach No).
		1	2	Mean
	① Available cover	8.0	5.0	6.5
CI 1	② Pool substrate	6.0	5.0	5.5
Channel and	③ Pool Variability	5.0	6.0	5.5
hydraulic characteri	4 Sediment deposition	11.0	11.0	11.0
stics	⑤ Channel flow status	7.5	8.5	8.0
	6 Channel sinuosity	7.0	8.0	7.5
Bank	7 Cross-section shape	7.0	7.0	7.0
	8 Bank stability	9.0	9.0	9.0
Disturban	9 Channel alteration	6.0	6.0	6.0
ce	Stream crossing structures	3.2	3.2	3.2
	Score	61.5	61.5	66
	(Grade)	(4)	(4)	(4)

어지고 수생식물은 빈약하게 나타났으며, 하도 개수로 인한 교란이 심하여 한계(4등급)상태로 평가되었다.

3) 고찰

하천유형이 중경사인 경우, 대조하천인 남강 은 하천구조물 설치와 하천개수 등의 교란이 거 의 없는 구간에서는 3개 영역의 10개 서식처 변 수에 대한 평가결과가 고르게 우수 상태로 나타 났다.

비교하천인 유등천의 도시구간은 친수활동을 위하여 보 및 징검다리 등의 설치로 인하여 하 도 및 수리 특성 분야에서는 유효 서식처 및 여 울출현빈도의 2개 서식처 변수에 대한 평가결 과가 보통상태로 나타났으며, 하안영역에서는 부분적으로 석재·콘크리트블록 호안이 설치되 어 있어 하안 안정성은 보통으로 평가되었다. 특히, 교란영역에서는 고수부지 조성과 저수 및 고수호안에 콘크리트블록이 설치되어 있고 하 천횡단구조물이 과다하게 설치되어 있어 한계 상태와 미흡상태로 평가되었다.

하천유형이 완경사인 경우, 대조하천인 남강은 하천구조물이 없고 부분적인 하천개수가 있는 구간에서는 하도 및 수리 특성 영역의 6개서식처 변수에 대한 평가결과가 고르게 나타났다. 제방축조 등의 하천개수로 인하여 하안영역의 하도단면형상과 하안 안정성 및 교란영역의하도개수의 3개의 서식처 변수에 대한 평가결과가 우수 상태로 평가되었으나 상대적으로 낮게 나타났다.

비교하천인 갑천 및 유등천의 도시구간은 친수활동을 위한 하천횡단구조물 설치, 고수부지 조성, 저수 및 고수 호안 설치 등의 하도개수 등 으로 인하여 소의 하상재료(기질) 및 소의 다양 성이 단순하여 한계상태로 평가되었다.

본 연구에서 자연하천에 가까운 참조하천과 교란하천인 비교하천을 조사하고 평가한 결과에 의하면 비교하천들은 농촌지역 및 도시지역등 하천주변의 토지이용에 따라 친수와 이수 등하천공간 이용에 대한 수요가 크게 다르기 때문에 하천교란의 특성 및 정도가 다르게 나타났다. 따라서 교란하천은 하천의 물리환경에 대한조사 및 평가를 수행하고 현황을 진단하여 하천관리계획의 수립에 반영하여야 한다.

본 연구결과는 앞으로 하천관리 및 보전을 위한 목표의 수립, 하천공사에 대한 평가 및 시행된 하천복원사업 등의 효과를 검증하는 데 활용될 수 있을 것이다.

IV. 결 론

본 연구는 국내 하천의 자연적인 특성과 하천 공간의 이용 특성을 반영하여 개발한 하천의 물리환경 평가시스템의 적용성을 검증하는 것이목적이므로, 1차적으로 대조하천인 남강을 기준으로 도시화로 교란된 하천인 갑천과 유등천을 비교하천으로 적용하여 분석, 검토하였다. 연구

결과는 도시하천에서 일반적으로 시행되는 친수공간의 조성으로 인한 서식처 환경변화를 나타내는 변수들을 분석하여 하천의 물리환경 복원을 위한 기초자료를 제시하였다는 데 그 의의가 있으며, 요약하면 다음과 같다.

하천횡단구조물이 없고 하천개수가 거의 없는 대조하천 구간에서는 3개 영역의 10개 서식처 변수에 대한 평가결과가 고르게 최적상태로나타났다.

수경창출을 위한 보 및 산책을 위한 징검다리, 고수부지 조성으로 저수호안 및 고수호안설치 및 체육공원 조성 등 친수활동을 중심으로하천정비가 시행된 도시하천인 비교하천 구간에서는 하천교란으로 인하여 한계상태로 평가되었다. 또한, 하천횡단구조물의 설치 간격이짧기 때문에 중경사 하천유형에서는 여울의 출현빈도가 작거나 없는 경우도 있으며, 완경사하천유형에서는 보 상류의 소에 오니가 퇴적되고 저수호안 설치로 인하여 소의 다양성이 훼손되는 등 서식환경이 나쁜 것으로 나타났다.

결과적으로 하천기본계획에서 친수지구로 지정된 도시하천에서는 하도 및 수리 특성 분야의 서식처 매개변수를 고려하여 치수, 이수 및 환 경적 측면에서 자연과 인간이 공존하는 하천복 원 및 관리가 필요할 것이다. 하천의 물리환경 평가시스템은 향후 다양한 하천유형과 하천 공 간이용 측면 등을 반영하고 지속적인 적용을 통 하여 보완할 필요가 있다.

References

- Davis, W.M. 1899. The geographical cycle. The Geographical Journal. 14: 481-504.
- Montgomery, D.R. and Buffington, J.M. 1997.

 Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin: 596-611
- EPA. 2004. Field operation manual. EPA

841-B-04-004.

- EPA. 2004. Field operation manual. EPA 841-B-04-004.
- Ferguson, R.I. 1987. Hydraulic and sedimentary controls of channel pattern. In, K.S. Richardson (ed.), River Channels. Blackwell, London, UK.: 129-158.
- Horton, R.E. 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America. 56: 277-370.
- KICT. 2007. Development of multi-functional river restoration techniques. KICT 2007-122: 32-69. (in Korean with English summary)
- Kim DC and Park IS. 1999. A study on the evaluation criteria of stream naturalness for ecological environment restoration of stream corridors. Journal of Korean Institute of Landscape Architecture. 17(3): 123-134. (in Korean with English summary)
- Kim KH. 2008. Assessment of physical river disturbance in Namgang-dam downstream. Journal of Korean Society of Environmental Restoration Technology. 12(3): 83-97. (in Korean with English summary)
- Kim KH. 2009. Assessment of physical river disturbances by river improvement; Case study of Nam River and Youngcheon River. Journal of Korean Society of Environmental Restoration Technology. 11(3): 74-86. (in Korean with English summary)
- Kim KH and Jung HR. 2015. An Application of Stream Classification Systems in the Nam River, Korea. Ecology and Resilient Infrastructure. 2(2): 118-127. (in Korean with English summary)
- Kim KH · Lee HR and Jung HR. 2016. An anal-

- ysis on geomorphic and hydraulic characteristics of dominant discharge in Nam River. Journal of Korean Water Resources Association. 49(1): 83-94. (in Korean with English summary)
- Lane, E.W. 1957. A Study of the Shape of Channels Formed by Natural Streams Flowing in Erodible Materials. Missouri River Division Sediment Series No.9, U.S. Army Engineer Division, Missouri River, Corps of Engineers, Omaha, Nebraska, USA: 13-38.
- LAWA(Laenderarbeitsgemeinschaft Wasser). 2004. Gewaesserstrukturguetekartierungin der Bundesrepublik Deutschland -Uebersichtsverfahren, Berlin, Germany. (in German)
- Leopold, L.B. and Wolman, M.G. 1957. River channel patterns: braiding, meandering and straight. U.S. Geological Survey Professional Papers 282b: 39-85.
- L.B. Leopold, M.G. Wolman, J.P. Miller(1964), Fluvial Processes in Geomorphology, Freeman, San Francisco, CA (1964): 522.
- Montgomery, D.R. and Buffington, J.M. 1993. Channel Classification, Prediction of Channel Response, and 10.
- Park BJ · Shin JI and Jung KS. 2005. The evaluation of river naturalness for biological hab-

- itat restoration: II. Application of evaluation method. Journal of Korean Water Resources Association. 38(1): 37-48.
- Parsons, M., Thoms, M. and Norris, R. 2002.

 Australian River Assessment System: AusRivAS Physical Assessment Protocol. Monitoring River Heath Initiative Technical
 Report no 22, Commonwealth of Australia
 and University of Canberra, Canberra, Australia.
- Rosgen, D.L. 1994. A classification of natural rivers. Catena 22: 169-199.
- Rosgen, D.L. 1996. Applied River Morphology.

 John Wiley & Sons, Chichester, UK.
- SEPA. 2003. Field Survey Guidance Manual: 2003 Version. Scottish Environment Protection Agency, Environmental Agency, Bristol, UK.
- Strahler, A.N. 1952. Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America 63: 1117-1142.
- Thorne, C.R. 1997. Channel types and morphological classification. In, C.R Thorne, R.D. Hey and M.D.
- Yamamoto, K. 1988. Channel Specific Analysis.
 Public Works Research Institute Report 1394. (in Japanese).

Appendix I

Table 1. Field survey data sheet for assessment of channel and hydraulic characteristics.

			for assessment of char	<u> </u>		
	Stream class		High gradie	Location Location		
	Stream name			Reach No.		
	Station No.		~	Reason for survey		
	Investigator			Date/Time		
		1		,	'	
	Hobitot	0:1		Condition category		
Division	Habitat parameter	Optimal	Sub-optimal	Normal	Marginal	Poor
	parameter	20~18	17~14	13~8	7~4	3~1
	Available cover	Greater than 70% of substrate favorable for epifatunal colonization an fish cover, mix of Boulder-cobble or othe stable habitat and at a sta to allow full colonization potential.	maintenance of populations; presence of additional substrate in the form of newfall, but not yet	40-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed	30-20% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking
	Score	20 19 18	17 16 15 14	13 12 11 10	7 6 5 4	3 2 1
	Embeddednes S	Step-pool substrate consis of cobble and boulder particles that are 0-25% surrounded by fine graw Layering of cobble provides diversity of nich space.	step-pool areas may be 25-45% surrounded by fine gravel.	Cobble and boulder particles in step-pool areas may be 45-65% surrounded by fine gravel.	Cobble and boulder particles in step-pool areas may be 65-85% surrounded by fine gravel.	Cobble and boulder particles in step-pool areas are more than 85% surrounded by fine gravel.
	Score	20 19 18	17 16 15 14		7 6 5 4	3 2 1
	Velocity/ Depth	All four velocity/depth regimes present (slow-deep, slow- shallor fast-deep, fast-shallow). Slow is <0 m/s, deep is > 0.5 m.	regimes).	Only 2 of the 3 habitat regimes are present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 2 velocity/depth regime (usually slow-deep, slow-shallow)	Dominated by 1 velocity/depth regime (usually slow-deep).
	Score	20 19 18	17 16 15 14	13 12 11 10	7 6 5 4	3 2 1
Channel and Hydraulic Characte- ristics	Sediment deposition	Little or no enlargement islands or point bars an less than 5% of the botto affected by fine grave deposition.	formation, mostly from fine	Moderate deposition of new gravel on old and new bars; 20-35% of the bottom affected; fine gravel deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Moderate deposition of new gravel on old and new bars; 35-50% of the bottom affected; fine gravel deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine gravel, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial fine gravel deposition.
	Score	20 19 18	17 16 15 14	13 12 11 10	7 6 5 4	3 2 1
	Channel flow status	Water reaches base of bo lower banks, and minim amount of channel substrate is exposed.		Water fills 25-50% of the available channel; and/or riffle substrates are mostly exposed.	Water fills 50-75% of the available channel; and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	weight		: 1.0, stepping stone : 0.9, dredging			
	Frequency of step-pools	20 19 18 Occurrence of step-poor relatively frequent; ratio distance between step-pools divided by wid of the stream <4:1 (generally 1 to 4); varie of habitat is key. In streat where step-pools are continuous, placement of boulders or other large natural obstruction is important.	infrequent; distance between riffles divided by the width of the stream is between 4 to 6.	13 12 11 10 Cocasional riffle; bottom contou rs prov ide some habitat: distance between step-pools divided by the width of the stream is between 6 to 8.	7 6 5 4 Occasional step-pool; bottom contours prov ide some habitart distance between step-pools divided by the width of the stream is between 8 to 10.	3 2 1 Generally all flat water or shallow step-pools; poor habitat; distance between step-pools divided by the width of the stream is a ratio of >10.
	Score	20 19 18	17 16 15 14	13 12 11 10	7 6 5 4	3 2 1

Table 1. Field survey data sheet for assessment of channel and hydraulic characteristics(continue).

							Condit	on cotegor	s,							
Scope	Habitat parameter		Optimal		Sub-c	ptimal	Norr	ion categor	y 	Mai	rginal		Poor			
Бсорс	That parameter		20~18			~14	13~				~4			3~1		
	Cross-section shape of channel	Both lev mounta levees improv reach ha natural improv slope retaini water re water	that are that are ved. >70 as conditional levee. Here is levee(> ng wall	natural re not 20% of ition of Stream steep e1:1), , low tat, high l, and	One of b is mostly or natur that a improv 70~50% has con	oth levees mountains al levees ure not wement. of reach dition of I levee.	One of both mostly mon natural leve not impro 50~30% of condition of level	n levees is untains or es that are everent. Treach has	levee re condi levees ecoo imp clo (mild co	sides ares, but each has tion of a with sisystem rovement se-to-na slope laver rever	re confi 30~10 s relative close-to- mall im- accordination work- accordination work- a	o% of rely -natural pact on ng to ss for ream (2), soil and	by leve reach l close-t becau stream	ides are of the ses, and < the ses,	10% of ition of levees tificial ing to	
Bank	Score	20	19	18	17 16	15 14	13 12 11	10 9 8	7	6	5	4	3	2	1	
	Bank Stability (score each bank)	failu minimal	sion or re abser ; little p ure pro	bank nt or ootential blems.	infreque areas of mostly he 5-30% o reach has	ly stable; nt, small erosion, ealed over. f bank in s areas of sion.	Moderately 30-50% of reach has erosion; hig potential dur	bank in areas of the rosion	50-70 are	% of ba as of e sion pot	ly unsta nk in re rosion; cential d	ach has high	areas frequer section ob- slough	eroded areas straight bends; ank 00% of sional		
	weight	Natural	bank :	1.0, ati	ficial mild	•	k: 0.9, soil-co e/concrete-blo					ne pitch	ing reve	etment(po	orous) :	
	Score	20	19	18	17 16	15 14	13 12 11	10 9 8	7	6	5	4	3	2	1	
Disturbanc	Channel alteration	dredgi mini with n	nelization ng abse mal; str ormal p s than:	ent or ream pattern	channel present, areas of abuti evic of channeliz dredging than past be pres rec channeli not p	me dization usually in f bridge ments; lence past ation, i.e., , (greater 20yr) may sent, but zent zzation is resent. 30%)	Channelizati extens embankr shoring s present on b and 30-50% reach cha and dist	ive; nents or tructures ooth banks; of stream nnelized	extensions shoring both	sive; en ng struct banks; a m reacl	ntion manbankm nures pre and 50-' h chann isrupted	ents or sent on 70% of selized	gabion 70% c cha disrup habitat	s shored or ceme of stream nnelized ted. In greatly noved e	nt; over n reach and stream altered	
e	Score	20	19	18	17 16	15 14	13 12 11	10 9 8	7	6	5	4	3	2	1	
	Stream crossing structures	affected because ructures and drop are not	Habitat affect structure the heigh crossing such as drop str	is a little red by s because at of river structures weir and ucture in e <0.5m.	Habitat is m affected by because the river cr structures su and drop st reach are 0	Habit structi of riv suci	at is mo ures bec ver cros h as wo ucture i	ore affectuse the sing streem and n reach 1.5m.	cted by height uctures drop	Habitat is seriousl						
	Weight	Numbe	er of ste	ep-pools	between s	structures :		s(1.0), 5~ ep-pool(0.6)		pools(0	.9), 3-2	riffles((0.8), 1 step-pool(0.7),			
	Score	20	19	18	17 16	15 14	13 12 11	10 9 8	7	6	5	4	3	2	1	

Appendix II

Table 2. Field survey data sheet for assessment of channel and hydraulic characteristics.

								Mid	gradio	ent str	eam		-								
	Stream class												Lo	cation	l						
	Stream name												Rea	ch N	Э.						
	Station No.					~						I	Reason	for s	urvey						
	Investigator												Dat	e/Tim	e						
										C	onditi	on ca	tegory								
Division	Habitat parameter		Optimal			Sub-o	ptimal				Nor					Ma	rginal			Poor	
	parameter		20~18			17-	~14				13	~8				7	~4			3~1	
	Available cover	substra epifauna fish cov submerg banks, co habitat an full cole (I.e. logs/ new fa	er than 50 te favoral l coloniza eer, mix co ged logs, in bble or ot d at a stage onization in snags that all and are transient).	ole for tion and f snags, undercut her stable to allow potential are NOT	w colored ad mainted pres substanted for colored	6 mix o ell-suite onization equate mance of sence of trate in l, but no lonization gh end	d for f n poter habitat of popu f additi the for ot yet p on (may	full ntial; for lations; onal rm of prepared rate at	40-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed					habita d	t availa esirable quently	of stable bility le ; substra disturbe loved	ss than ate				
	Score	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	Riffle Substrate	Riffle sugravel, c particle surrounde Pool subst of subst little to n and g	bstrate co obble, and s that are d by fine strates are rate mater o depositio gravel or o prevalent.	nsists of 1 boulder 0-25% sediment. a mixture ials with n of fines	Grave particl be 25- substra coarse ma	I, cobblees in rid 45% sum sedimentes are to soft s ts and	e, and file area rounded nt. Pool a mix sand; so submer	boulder as may by fine l ture of me root ged	G pa be subs	ravel, articles 45-659 strates a oft san	cobble in rif % sum edimen are a n d; son	e, and file ar roundent. Po mixtur ne roo etatio	bould reas ma	er ay fine arse and	Grave particle 65-85 substr coars root	l, cobb es in rift % surro sedime rates are te to so mats a	e, and	boulder may be by fine ture of some nerged	Gravel, particles i than by fir substrate root n vegetati	cobble, and n riffle area 85% surro ne sedimen may be all nat and sub on abundar severely 1	l boulder s are more unded t. Pool mud with merged tt. Niche
	Score	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Channel	Velocity/ Depth	regimes slow- s fast-sl	ur velocity present (sl hallow, fa allow). Sl deep is >	ow-deep, st-deep, low is	are pro	of the esent (if g, score sing oth	fast-sha lower	allow is than if	Only	prese slo	the 4 nt (if w-sha ing, s	fastsl llow		mes or			ted by pth reg		velo	ominated by city/depth r ally slow-c	egime
and	Score	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Hydraulic Characte-r istics	Sediment deposition	islands or than 5 affect	no enlarg point bars of the ed by sed deposition	s and less bottom liment	forn gravel, 5-20%	new ir nation, 1 sand, o of the l deposi	nostly r fine se oottom a	from ediment; affected;	sand new affe bst	l, or fir bars; ected ; truction ds; m	nê sedi 20-35 sedin ns, con	iment % of nent o nstrict e dep	new gra on old the bot leposits ions, a osition nt.	and tom s at nd	gravel, on old of t se	, sand, c and ne the bott diment bstru striction ate dep	w bars; om affe deposits ctions, s, and b	ediment 35-50% cted; at	mater developm the bottor pools a	deposits dial, increasent; more the changing most absert l sediment	ed bar an 50% of frequently; at due to
	Score	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	Channel flow status	lower ba	aches base anks, and of channel s exposed	minimal substrate	availal	r fills ble char channel expo	nnel; or substra	<25%		mel; an		ffle st	he avail ibstrates ed.		availab	ole chan	50-75% nel; and/ mostly e	or riffle		water in c sent as star	
	weight		Natur	al channe	1 : 1.0,	steppin	g stone	: 0.9,	dredgi	ing : C).8, Cı	ossin	g struct	ture l	eight:((<0.5m)	0.7, (0	.5∼1.0n	0.6, (1.0	m<) 0.5	
	Score	20	19	18	17	16	15	_	_	12	11	10	-	8	7	6	5	4	3	2	1
	Frequency of riffles	relatively distance divided by <7:1 (gen of 1 In stream continue boulder natura	rence of frequent; e between width of really 5 to nabitat is s where rous, place s or other	ratio of riffles the stream 7); variety key. iffles are ment of r large, ion is	infrequ riffles	divided stream	tance b by the	etween width	rs pr	rovide es divid	some betw led by	habit veen the v	tom cor at: dista vidth of 15 to 2	ance f the	riffles	rs prov distance divided	riffle; b ide some betwee by the v etween 2	habitat: n width of	shallow distance t by the wi	ly all flat riffles; poo etween riff dth of the ratio of >2	r habitat; les divided stream is a
	Score	20	important. 19	18	17	16	15	14	12	12	11	10		8	7	6	5	1	2	2	1 1

17

19

Score

15

16

14 13 12 11 10 9 8

Table 2. Field survey data sheet for assessment of channel and hydraulic characteristics(continue).

									(Conditi	on c	ategor	у						
Scope	Habitat parameter		Optimal		Su	b-op	otima	1		Norn	nal			Mar	ginal				
			20~18			17~				13~					~4	L	3~1 Both sides are confine		
	Cross-section shape of channel	mount levees improved has con- lev improved slope retaining	dition of ree. Stre vement : levee(>	has condition of natural levee.				mostl natura not 50~3	y mou l levee impro	intair es that verne reac of na	ns or nt are ent. h has	levees, has re close-t small accord works sti	but 30 clatively o-natur impact ling to s for claream (re(<1:2) ment, a	~10%	by levees, and <10% reach has condition close-to-natural leve				
Bank	Score	20	19	18	17	16	15	14	13 1	2 11	10	9 8	7	6	5	3	2	1	
	Bank Stability (score each bank)	erosion absent o poten 1 <5% o	or bank or minin tial for oroblems f bank a	s. affected	infred areas mostly 5-30% reach	quen of hea of has erosi	erosi aled band area ion.	nall ion, over. k in s of	30-5 reac erosic potenti	al dur	band areas thereing f	k in s of osion loods.	of bank ero pote	in rea sion; h ntial di	ch has igh ero ıring fl	areas of sion oods.	frequen sectio obvious 60-100 eros	; "raw" t along ns and bank sl % of ba sional so	areas straight bends; oughing; ank has ears.
	weight	Natural	bank:	1.0, atif	icial m	ild s	slope	banl	Ó.	6, sto	one/	concre		,	0.8, sto	ne pitcl	ning rev	etment(p	orous) :
	Score	20	19	18	17	16	15	14		2 11		9 8	7	6	5	4	3	2	1
	Channel alteration	dredg min with	nnelizatic ing abso imal; str normal p ss than	ent or ream pattern	channe dredg than pa be pres channe	nt, un s of ents; of p eliza ing, ast 2 ent, lizati	sually evidence bast tion, (gre 20yr) but ton ion i	y in lge lence i.e., ater may recent	embanl struct both ba of ar	extensi aments ures p	or s resen nd 30 n read lized	horing t on 0-50% ch	extens shoring both b	ive; en ; structi anks; a n reacl	ires pre	ents or sent on 70% of elized	gabion 70% c char disruj habitat g	f strean melized oted. Ins	nt; over n reach and tream ltered or
D 1	Score	20	19	18		16	15	14	13 1	2 11	10	9 8	7	6	5	4	3	2	1
Disturbance	Stream crossing structures	structure crossing as w	es becau structureir and	h are not	affected because rive struct wei structur	l by the er cr ures r an	struc heig rossin such d dro reac	ctures ght of ng n as op	affect becau river c such a struct	ed by se the rossing s wei	struc heig stru and reacl	tures ht of ictures drop	structur of riv such	res beca er cross as we cture i	ause the		affecte because river cre such as	at is ser d by str e the he ossing s weir a re in re >1.5m.	uctures right of tructures and drop
	Weight			ep-pools						no ste	p-po	<u>ol(0.6)</u>							l(0.7),
	Score	20	19	18	17	16	15	14	13 1	2 11	10	9 8	7	6	5	4	3	2	1

Appendix III

Table 3. Field survey data sheet for assessment of channel and hydraulic characteristics.

								12												
	Stream class					J	Low g	radient	strea	m	Loc	cation			1					
	Stream name											ch No.								
	Station No.			~	_					Re		for sur	vev							
	Investigator											e/Time								
									Co		n cate									
Scope	Habitat parameter		Optimal				optimal				Norma					rginal			Poor	
		Granta	<u>20∼18</u> r than 5	n% of	50.4	17 10% m	~14	etabla	40.30	% mi	13~8	able ha	hitat:	30.2		~4	stable	Loce f	3~1	l 0% stable
	Available cover	substrarepifaur and fish snags, sundercut other starestares a stage colonia (I.e. log NOT n	te favora nal color h cover; submerge banks, o ble habite to alle zation po s/ snags ew fall T transie	able for nization mix of ed logs, cobble or at and ar ow full otential that are and are ent).	habii po popul additi form for rate a	tat; we ull coluitential habit mainter lations; onal su of nev yet procolonit thigh	ell-suite onizati ; adequatat for nance ; prese ubstrate wfall, larepared zation end of	ed for on uate of ence of but not did	habita desira di	at ava	ilabilit ubstrat ed or	ty less te frequ remove	than ently d	ava de frequ	habitat ilabilit sirable iently rem	; habit y less ; subsi disturb ioved	than trate ped or	habit substr	itat; la at is c	ack of obvious; stable or
	Score	20	19	18	17	16		14	13			10 9	8	7	6	5	4	3	2	1
	Pool substrate characteristics	materia and firm mats	re of su als, with sand pr root and subr ation cor	gravel revalent : merged	mud, be do mat		ny; mu t ; son subme	id may ne rooi erged	bottor	n ; lit	tle roo	y or so t mat ; getation	little		ittle ro	ay or l oot ma tation.		bedroc		clay or root mat ation.
	Score	20	19	18	17	16	15	14	13	12	11	10 9	8	7	6	5	4	3	2	1
		Even n	nix of la			lajority											small			f pools
	Pool variability	llow, la -shallo	arge-deep ow, smal ols pres	o, small ll-deep		ge-deep						leep po				llow.			absen	
	Score	20	19	18	17	16	15	14				10 9		7	6	5	4	3	2	1
Channel and Hydraulic Characte-ri stics	Sediment deposition		ds or po	oint bars % of the ed by	form gra sedim botto	ation, vel, sa	mostly nd, or 0-40% ected;	from fine of the slight	gravel on old of so obst	l, sand d and the b edime ructio ar eratede	d, or finew bottom nt depoint	ine sedi pars; 40- affecte posits a nstriction ds; on of p	ment ·60% d; t ons,	new g sedim ban b sed consti	gravel, nent on s; 60-8 oottom liment obstru rictions derated	sand, old a 80% o affect deposi actions s, and	or find nd new f the ed; its at , bends on of	devel than bott freq almost	oreased opments 80% om chuently; abser	d bar at; more of the anging pools at due to sediment
	Score	20	19	18	17	16	15	14	13	12	11	10 9	8	7	6	5	4	3	2	1
	Channel flow status	both lo minin chan	reaches ower ban nal amou nel subs s expose	base of ks, and ant of strate	Water ava		>75% channe of chan	of the el; or mel	Wate	er fill ilable subs	s 25-5 chann	50% of nel; and are mo	the /or	availa rifl	ible ch fle sub		and/or are	Very chann	el and	water in I mostly standing s.
	weight	Natu	ıral chan	nel : 1.0), step	pping	stone :	0.9,	dredgi		0.8, C m<) 0		struc	cture	height	:(<0.5	5m) 0.	7, (0.5	~1.0m	n) 0.6,
	Score	20	19	18	17	16	15	14	13		11		8	7	6	5	4	3	2	1
	Channel sinuosity	length longer str (Note-ch consid coastal low-ly paramet	ds in the same the same the same as to 4 if it was raight liminannel breared nor plains an ing areas ter is not in these	stream times as in a ne. aiding is mal in nd other s. This of easily	ind len longe	rease gth 1 r than	the str to 2 t	eam imes as in a	The increated to 2	bence times	ls in t e strea longe	he stream leng or than ight lin	th 1 if it	wa cł	iterway nanneli	straig has l zed fo listance	been or a	water chan	way h	traight; as been d for a cance.
	Score	20	19	18	17	16	15	14	13	12	11 :	10 9	8	7	6	5	4	3	2	1
	JUIE	1 20	17	10	1/	10	113	14	13	14	11 .	10 9	_ 0	_ /	10	1 2	_ +	1 3		

Table 3. Field survey data sheet for assessment of channel and hydraulic characteristics(continue).

	Habitat									Cond			gory								
Scope	parameter		Optimal			Sub-op					Norr 13~						ginal	Poor			
	Cross-section shape of channel	mount: levees improved has con- lev improv slope retaining	dition of ree. Streament : vement : e levee(>	natural re not of reach f natural am steep 1:1), ow water n water	mos natural impro of read	tly mo l levees vemen	h leve untain that a t. 70~ condit	s or are not 50% tion of	One of both levees is mostly mountains or natural levees					levees, has re close-t small accord works str leve	ides are but 30 latively o-natura impact ling to for cleam (ne(<1:2),	~ 10% of condition of condition on economic on economic ose-to-inild slot, soil condition of con	of reach tion of es with system rement natural ope over	and < has clos levees artif	3~1 h sides ed by 10% of condition se-to-ma s becau- icial st cording /ement	levees f reach on of tural use of ream to	
Bank	Score	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	Bank stability (score each bank)	absent c poten I	or bank	failure al; little future	infrequ	Moderately unstable; 30-50% fof bank in reach has areas of erosion; high erosion potential during floods.						of bank ero	in read		areas or sion						
	weight	Natural	bank:	1.0, atif	icial n							n) : 0.8 ent 0.5	3, stone	pitchi	ng reve	tment(p	orous)	: 0.6,			
	Score	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	Channel alteration	dredg min with 1	nnelizatic ing abse imal; str normal p ss than	ent or eam pattern	preser of t ev cha dredg pas pre	ne char tit, usua oridge a vidence innelizat ting, (g t 20yr) sent, b innelizat pres (5~3	abutme of pa tion, it reater may out rec- ion is ent.	areas ents; ist i.e., than be ent	exter shoring both	bank am r	emb ructur s; an	es pr d 30 chan	nents resen -50% neliz	or it on of	extens shoring both b strear	ive; em structu anks; a n reach		ents or sent or 70% of elized	on over 70% of strea		
Dicturbanca	Score	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Disturbance	River crossing structures	crossing as w structure	es becau structur eir and in reacl at all.	se river res such drop	by struct struct and rea	uctures t of riv ures su drop s ach are	becau ver cro ich as tructur < < 0.5	use the ossing weir re in m.	affect the 1 struc drop	neight tures struc 0	stru of 1 such cture $.5 \sim 1$	ctures river as v in re .0m.	s bec cros weir each	ause sing and are	of rive such stru	es beca er cross as we cture in 1.0~	nuse the sing strain ir and n reach 1.5m.	e heigh uctures drop are	affected because rive struct wei structur	d by stee the here cross tures sures and rein rein rein rein rein rein rein rein	ructure eight o sing uch as drop each ar
	,, orgin								ste	p-poo	10.6)									