• Title/Summary/Keyword: straw size

Search Result 100, Processing Time 0.024 seconds

Characteristics of Digestion Dynamics of Rice and Oat Straw Relating to Microbial Digestion in the Rumen of Sheep Given High-Concentrate Diets

  • Goto, M.;Morio, T.;Kojima, E.;Nagano, Y.;Yamada, Y.;Horigane, A.;Yamada, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.9
    • /
    • pp.1219-1227
    • /
    • 2000
  • Rumination behavior, in vivo digestibility of cell wall constituents, particle size reduction in the rumen, and retention time in the digestive tract of sheep were examined using rice and oat straw as roughage sources. The in sacco digestibility, rumen fermentation, and microbial population and internal adenosine 5-triphosphate (ATP) content were also determined under feeding conditions of high-roughage and high-concentrate diets. Chewing number and time in rumination behavior were higher with rice straw than with oat straw, while the in sacco and in vivo DMD of rice straw were consistently lower than those of oat straw. Rice straw also showed higher frequency of thinner and longer particles in the rumen contents and lower retention time in the whole digestive tract as compared to those of oat straw. Rice straw was more effective to maintain the ruminal pH than oat straw, being reflected in higher internal ATP content of large-type protozoa on the high- concentrate diet. Changes in the ruminal microflora by shifting from the low- to the high- concentrate diet were also different between rice and oat straw.

Influence of Diet Induced Changes in Rumen Microbial Characteristics on Gas Production Kinetics of Straw Substrates In vitro

  • Srinivas, Bandla;Krishnamoorthy, U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.990-996
    • /
    • 2005
  • The effect of diets varying in level and source of nitrogen (N) and fermentable organic matter on dynamic characteristics of microbial populations in rumen liquor and their impact on substrate fermentation in vitro was studied. The diets tested were straw alone, straw+concentrate mixture and straw+urea molasses mineral block (UMMB) lick. The same diets were taken as substrates and tested on each inoculum collected from the diets. Diet had no effect on the amino acid (AA) composition of either bacteria or protozoa. Differences among the diets in intake, source of N and OM affected bacterial and protozoal characteristics in the rumen. Upper asymptote of gas production (Y$\alpha$) had a higher correlation with bacterial pool size and production rate than with protozoal pool size and production rate. Among the parameters of the gas production model, Y$\alpha$ and lag time in total gas has showed significant (p<0.01) correlation with bacterial characteristics. Though the rate constant of gas production significantly differed (p<0.01) between diet and type of straw, it was least influenced by the microbial characteristics. The regression coefficient of diet and type of straw for Y$\alpha$ indicated that the effect of diet on Y$\alpha$ was threefold higher than that of the straw. As microbial characteristics showed higher correlation with Y$\alpha$, and diet had more influence on the microbial characteristics, gas production on a straw diet could be used effectively to understand the microbial characteristics.

Effects of Rhizome Size and Mulching Materials on Agronomic Characteristics and Yield in Zingiber mioga ROSC. (양하(Zingiber mioga ROSC.) 지하경 크기와 피복재료가 주요형질과 수량에 미치는 영향)

  • 최성규;이종일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.2
    • /
    • pp.112-116
    • /
    • 1993
  • The experiment was carried out to investigate the influence of rhizome size and mulching materials on some agronomic characters and flower-head yield of Gingiber mioga ROSCOE. The larger the size of rhizome was, the more the number of leaves developed, and the higher the yield was. The most suitable rhizome size for planting was found to be from I2cm to 15cm. Rice straw and polyethylene film mulching materials increased the soil porosity and reduced change of the soil moisture content. The yield of flower-head was highest in the straw-mulching plot, indicating that straw would be the best mulching material for growth and yield of flower-head in Gingiber mioga ROSCE.

  • PDF

Spermatozoa motility, viability, acrosome integrity, mitochondrial membrane potential and plasma membrane integrity in 0.25 mL and 0.5 mL straw after frozen-thawing in Hanwoo bull

  • Kang, Sung-Sik;Kim, Ui-Hyung;Lee, Myung-Suk;Lee, Seok-Dong;Cho, Sang-Rae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.307-314
    • /
    • 2020
  • In the present study, we examined the effect of straw size on spermatozoa motility, viability, acrosome integrity, mitochondrial membrane potential, and plasma membrane integrity after freezing-thawing. Hanwoo semen was collected from three bulls and diluted with an animal protein-free extender, divided into two groups, namely, 10 million spermatozoa in 0.25 mL and 20 million spermatozoa in 0.5 mL straw, and cryopreserved. In Experiment 1, the motility and motility parameters of the frozen-thawed spermatozoa were evaluated. After freezing-thawing, the spermatozoa motility parameters fast progressive, straight line velocity, and average path velocity were compared between the 0.25 mL straw and 0.5 mL straw groups. They were 35.2 ± 1.0 and 32.3 ± 0.7%, 34.6 ± 0.7 and 31.8 ± 0.5 μm/s, 51.4 ± 1.3 and 47.1 ± 1.1 μm/s, 0.25 mL straw and 0.5 mL straw groups, respectively. In Experiment 2, the viability, acrosome membrane integrity, and mitochondrial membrane potential of the frozen-thawed spermatozoa were assessed. After freezing-thawing, the percentages of spermatozoa with live, intact acrosomes and high mitochondrial membrane potential were compared between the in 0.25 mL straw and 0.5 mL straw groups. They were 48.0 ± 2.6% and 35.6 ± 2.8% between the 0.25 mL straw and 0.5 mL straw groups. In Experiment 3, the plasma membrane integrity of frozen-thawed spermatozoa was compared. After freezing-thawing, the plasma membrane integrity was higher for the in 0.25 mL straw group than the 0.5 mL straw group. They were 62.0 ± 2.2 and 54.1 ± 1.3% between the 0.25 mL straw and 0.5 mL straw groups. In conclusion, our results suggest that freezing semen in 0.25 mL straw improves the relative motility, viability, and acrosomal, mitochondrial membrane potential, and plasma membrane integrity of Hanwoo bull spermatozoa.

Effects of Straw Size and Thawing Rate on Post-thaw Quality of Bog Semen (개의 동결 정액 제조시 Straw의 크기와 융해온도가 정자의 생존율에 미치는 영향)

  • Son J.M.;Kim Y.S.;Shin Y.J.;Lim Y.H.;Yoon K.Y.;Lee D.S.;Shin S.T.;Cho J.K.
    • Journal of Embryo Transfer
    • /
    • v.21 no.1
    • /
    • pp.77-83
    • /
    • 2006
  • 본 연구는 개 동결 정액 융해 시 straw 크기 및 융해 속도가 융해 정자의 질(quality)에 미치는 영향을 조사하고 최적의 융해 조건을 조사하는데 그 목적이 있다. 정상적인 번식능을 가진 비글 수컷 5마리에서 정액을 채취하여 원심 분리하여 정장을 버리고 남은 정자에 동결보호제인 glycerol이 첨가된 tris-glucose-egg yolk extender를 첨가하여 동결하고 액체질소에 보관한 후 융해하였다. 동결 융해 조건에 따른 효과를 알아보기 위해 straw는 0.25 ml과 0.5 ml크기를 사용하였고 융해 조건은 $75^{\circ}C$에 10초, $55^{\circ}C$에 12초 및 $37^{\circ}C$에서 120초로 하여 융해 후 정자의 활력도(vigor), 운동성(motility), Hypo-osmotic test(HOS test)를 이용한 생존성(viability) 및 $SperMac^{\circledR}$ 염색을 하여 정자의 membrane integrity를 비교 조사하였다. 조사 결과 0.5 ml 크기의 straw를 사용한 경우 $37^{\circ}C$ 융해가 $55^{\circ}C,\;75^{\circ}C$ 융해보다, 0.25 ml 크기의 straw를 사용한 경우에는 $37^{\circ}C,\;55^{\circ}C$ 융해가 $75^{\circ}C$ 융해보다 유의적으로 높은 활력 지수 및 생존성을 보였다(P<0.05). Straw크기에 따라 비교하였을 경우 0.5 ml 군에서 유의적으로 높은 활력도, 생존성 및 membrane integrity를 보였다(P<0.05). 결론적으로 개 정액이 동결 및 융해 시 0.5ml straw를 이용하여 동결한 후 $37^{\circ}C$에서 120초 동안 융해하는 것이 최적의 조건임이 사료된다.

Chemical and Absorption Characteristics of Water-soluble Organic Carbon and Humic-like Substances in Size-segregated Particles from Biomass Burning Emissions

  • Yu, Jaemyeong;Yu, Geun-Hye;Park, Seungshik;Bae, Min-Suk
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.96-106
    • /
    • 2017
  • In this study, measurements of size-segregated particulate matter (PM) emitted from the combustion of rice straw, pine needles, and sesame stem were conducted in a laboratory chamber. The collected samples were used to analyze amounts of organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and ionic species. The light absorption properties of size-resolved water extracts were measured using ultraviolet-visible spectroscopy. A solid-phase extraction method was first used to separate the size-resolved HULIS fraction, which was then quantified by a total organic carbon analyzer. The results show that regardless of particle cut sizes, the contributions of size-resolved HULIS ($=1.94{\times}HULIS-C$) to PM size fractions ($PM_{0.32}$, $PM_{0.55}$, $PM_{1.0}$, and $PM_{1.8}$) were similar, accounting for 25.2-27.6, 15.2-22.4 and 28.2-28.7% for rice straw, pine needle, and sesame stem smoke samples, respectively. The $PM_{1.8}$ fraction revealed WSOC/OC and HULIS-C/WSOC ratios of 0.51 and 0.60, 0.44 and 0.40, and 0.50 and 0.60 for the rice straw, pine needle, and sesame stem burning emissions, respectively. Strong absorption with decreasing wavelength was found by the water extracts from size-resolved biomass burning aerosols. The absorption ${\AA}ngstr{\ddot{o}}m $ exponent values of the size-resolved water extracts fitted between 300 and 400 nm wavelengths for particle sizes of $0.32-1.0{\mu}m$ were 6.6-7.7 for the rice straw burning samples, and 7.5-8.0 for the sesame stem burning samples. The average mass absorption efficiencies of size-resolved WSOC and HULIS-C at 365 nm were 1.09 (range: 0.89-1.61) and 1.82 (range: 1.33-2.06) $m^2/g{\cdot}C$ for rice straw smoke aerosols, and 1.13 (range: 0.85-1.52) and 1.83 (range: 1.44-2.05) $m^2/g{\cdot}C$ for sesame stem smoke aerosols, respectively. The light absorption of size-resolved water extracts measured at 365 nm showed strong correlations with WSOC and HULIS-C concentrations ($R^2=0.89-0.93$), indicating significant contribution of HULIS component from biomass burning emissions to the light absorption of ambient aerosols.

The Optimum Levels of Alkaline Hydrogen Peroxide Treatment of Rice Straw for Feed (볏짚 사료가치 증진을 위한 알카리성 과산화수소의 적정 처리수준)

  • Choi, Yoon-Hee;Kim, Myeong-Sook;Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.320-325
    • /
    • 1994
  • These studies were conducted to investigate the chemical composition changes in in vitro digestibility for the improvement of nutritive value of rice straw by alkaline hydrogen peroxide. The content of neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, cellulose and lignin in rice straw was decreased with higher level of $H_2O_2\;(pH 11.5)$. The content of ADF, cellulose and ash of the rice straw washed after $H_2O_2\;(pH 11.5)$ treatment tended to be increased but NDF, hemicellulose and lignin were decreased with higher concentration of $H_2O_2\;(pH 11.5)$. In the rice straw washed after alkaline hydrogen peroxide treatment the decomposition of cellulose and lignin was effective in $pH\;11.5{\sim}12.5$, in smaller cutting size and $55^{\circ}C$. The in vitro organic matter digestibility was increased with higher $H_2O_2$ concentration and smaller cutting size of rice straw.

  • PDF

Effect of Surface Cover on the Reduction of NPS Pollution at a Vegetable Field (야채재배 밭에서 지표피복의 비점오염원 저감효과)

  • Shin, Minhwan;Jang, Jeongryeol;Won, Chulhee;Choi, Younghun;Shin, Jaeyoung;Lim, Kyoung Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.436-443
    • /
    • 2012
  • This research was focused on the effect of rice straw and rice straw mat on the reduction of upland field non-point source (NPS) pollution discharges. Six experimental plots of $5{\times}22m$ in size and 3% in slope prepared on gravelly sandy loam soil were treated with control, rice straw cover and rice straw mat cover. Radish in Spring growing seasons were cultivated. NPS pollution discharge was monitored and compared with respect to the treatments. The surface cover rate of rice straw and rice straw mat right after the treatments was 64.7% and 73.7%, respectively. Rainfall of the 16 monitored events ranged from 12.8 mm to 538.2 mm. Runoff coefficient of the events was 0.01~0.67 in control plot, 0~0.63 in rice straw plot and 0~0.45 in rice straw mat plot. The reduction of runoff compared to the control plot was 5.4~99.7% in rice straw plot and 32.9~100% in rice straw mat plot. The reduction of NPS pollution load was 52.0% for SS, 28.5% for T-N and 35.2% for T-P in rice straw plot and 79.8% for SS, 68.3% for T-N and 53.3% for T-P in rice straw mat plot. This research revealed that rice straw mat cover on the soil surface could not only increase the crop yield and farmer's income but also reduce the NPS pollution loads significantly.

Effect of Rice Straw Steaming Time and Mixing Ratio between Acacia mangium Willd Wood and Steamed Rice Straw on the Properties of the Mixed Particleboard

  • Tran, Van Chu;Le, Xuan Phuong
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • This study examined the effects of rice straw steaming time and mixing ratio between rice straw and wood particle on the properties of mixed particle board from Acacia mangium Willd wood and rice straw. Rice straw and Acacia mangium Willd wood were collected in Hanoi, Vietnam. The particle board was three-layer particle board with the structural ratio of 1:3:1. The thickness, density and board size of the particle board were 18 mm, $0.7g/cm^3$, and $800{\times}800{\times}18$ (mm, including trimming), respectively. A resin mixture between commercial Urea-formaldehyde (U-F) adhesive and methylene diphenyl isocyanate (MDI) adhesive was used with a dosage of 12% for the core layer and 14% for the surface layer. In this experimental design, the steaming time for rice straw was 15, 30, 45, 60, and 75 minutes at $100^{\circ}C$. The rice straw-wood mixing ratio was 10, 20, 30, 40, and 50%. The results showed that both mixing ratio and steaming time affect the properties of the particleboard, but the mixing ratio has a stronger impact. A higher mixing ratio and a longer steaming time resulted in a better quality of particleboard. The optimal steaming time for rice straw was 46.12 minutes with the straw-wood mixing ratio of 29.85% with the following characteristics of the particle board: the modulus of rupture (MOR) of 14.64 MPa, internal bond strength (IB) of 0.382 MPa, thickness swelling (TS) of 8.83%, and board density of $0.7-0.7g/cm^3$.