• Title/Summary/Keyword: stratum corneum

Search Result 169, Processing Time 0.024 seconds

Beneficial Effect of Curcumin on Epidermal Permeability Barrier Function in Hairless Rat (무모쥐에서 자외선에 의한 피부 장벽 손상에 미치는 커큐민의 보호 효과)

  • Jeon, Hee-Young;Kim, Jeong-Kee;Kim, Wan-Gi;Lee, Sang-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.686-690
    • /
    • 2008
  • Recent research has shown that curcumin has beneficial effects in a variety of skin diseases, including scleroderma, psoriasis, and skin cancer. In this study, we assessed the effects of curcumin on epidermal permeability barrier function in vivo and in vitro. In order to evaluate the effects of curcumin on epidermal permeability barrier function in vivo, hairless rats were exposed to UVB irradiation, and curcumin was administered orally at a dosage of 150 mg/kg per day for 8 weeks. Transepidermal water loss (TEWL) and epidermal thickness were measured at the end of the experiment. The expression of filaggrin, a marker of keratinocyte differentiation, and serine palmitoyltransferase (SPT), a marker of the formation of the stratum corneum lipid barrier, in human HaCat keratinocytes were analyzed. The in vivo results showed that an 8 week administration of curcumin markedly prevented the UVB-induced increase in TEWL. The UV-induced increase in epidermal thickness was also reduced significantly by curcumin treatment. The in vitro results demonstrated the concentration-dependent effects of curcumin on the expression of both filaggrin and SPT in HaCat cells, reflecting the notion that curcumin can induce epidermal keratinocyte differentiation and can improve the recovery of skin barrier functions. These results show that curcumin is a promising candidate for the improvement of epidermal permeability barrier function.

Anti-inflammatory Effects of Hataedock Extracted from Coptidis Rhizoma and Glycyrrhiza Uralensis on Atopic Dermatitis-like Skin Lesions of NC/Nga Mouse (황련-감초 추출물을 이용한 하태독법이 NC/Nga 생쥐에서 유발된 아토피 유사 피부염에 미치는 항염증 효과)

  • Cha, Ho-yeol;Ahn, Sang-hyun;Jeong, A-ram;Cheon, Jin-hong;Park, Sun-young;Choi, Jun-yong;Kim, Ki-bong
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.486-497
    • /
    • 2015
  • Objectives Hataedock is an orally administered herbal extract treatment for newborn babies that dispels toxic heat and meconium gathered by the fetus. The purpose of this study was to evaluate whether Hataedock alleviates inflammatory skin damage in AD (Atopic Dermatitis)-induced NC/Nga mice through regulating and maintaining the skin barrier and anti-inflammation effects.Methods We established an AD model in three-week-old NC/Nga mice through the repeated application of DNFB (dinitrochlorobenzene) on days 28, 35, and 42 after Hataedock treatment was orally administered. We identified changes in the skin barrier and anti-inflammation effects through the histological and immunohistochemical changes of TNF- α, NF-κB p65, iNOS, COX-2, and apoptotic bodies.Results Skin damage and angiogenesis were mitigated in the HT (Hataedock) group. Damage to the intercellular space of the stratum corneum as well as hyperplasia, edema, the infiltration of lymphocytes, and the increase of capillaries decreased in the HT group. Our results suggest that Hataedock treatment significantly down-regulated levels of TNF- α by 38% (p<0.001) and of NF-κB p65 by 70% (p<0.001). But Hataedock up-regulated apoptosis by 183% in dermatitis-induced skin.Conclusions These results suggest that Hataedock alleviates AD through diminishing the various inflammatory cytokines in skin lesions that are involved in the initial steps of AD development. It might have potential applications for the prevention and treatment of atopic dermatitis.

Distribution of the Quantum Dot Nano-particles that Penetrate Skin and Distinction of Combined Osmium Tetroxide in Electron Microscopic Analysis (피부로 침투된 양자점 나노입자의 분포와 전자현미경 분석 시 발견되는 오스뮴산 결합물과의 구분)

  • Choi, Ki-Ju;Park, Sang-Yong;Lee, Jeong-Min;Shin, Heon-Sub;Yang, Jung-Eun;Lee, Don-Gil;Mavonov, Garfurjon T.;Yi, Tae-Hoo
    • Applied Microscopy
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The possibility of nanoparticles (NPs) in biotechnology had been discussed by biomedical investigators. Here we report to suggest a solution and problems when using electron microscopy to determine the distribution of quantum dots (QDs) nanoparticles that penetrate skin. The results of this study showed that NPs were able to penetrate stratum corneum (SC) and sebocyte via hair follicle. However, we have found artifacts such as nanoparticles that are produced from combination of free fatty acid and osmium tetroxide during specimen preparation. It is usually difficult to identify NPs. Therefore, we tried to resolve these problems by comparing the cross-correlation image pattern that are derived from the images of sample that had been processed differently. This method can contribute to more accurate interpretation and minimal errors during the analysis using quantum dot as tracer.

The Preparation of Multi-Lamellar Emulsion Which Containing Pseudoceramide(PC-9) (유사 세라마이드(PC-9)를 함유한 다중 층상 유화물의 제조)

  • Park, Byeong-Deog;Yeom, Jong-Kyung;Lee, Myung-jin;Kim, Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.1
    • /
    • pp.55-68
    • /
    • 1999
  • A muti-lamellar emulsion containing a pseudoceramide, N-Ethanol-2-myristyl/ palmityl-3-oxostearmide/arachidamide(PC-9) has been prepared and its efficacy evaluation has been investigated. In order to prepare a muti-lamellar emulsion, first, the gram ratios of PC-9, fatty acid and cholesterol on the phase diagram to be capable of forming their lamellar liquid crystal structures were determined and secondly, the multi-lamellar emulsion was preprared using glyceryl monostearate and polyoxyethylene glyceryl monosteartate as emulsifers together with above mentioned pseudo-stratum corneum lipid components. Besides natural oils such as olive oil had a tendency to build up the multi-lamellar emulsion. And according as the amount of oil increased in the emulsion, it was observed that the optical anisotropy of “Maltese Cross” which was a typical configuration of multi-lamella mesophase texture diminished. In the dried state of the multi-lamella emulsion, it was examined to transform its emulsion phase into a lamella liquid crystal one. And finally, when the emulsion was applied into a human skin, it was investigated that it had effectiveness in reducing transepidermal water loss (TEWL) of the skin.

  • PDF

Comparative Study of Melanin Content in Corneocyte with Skin Color (각질세포 내 멜라닌 정량과 피부색의 비교 연구)

  • Kwak, Taek-Jong;Chang, Min-Youl;Lee, Sang-Min;Park, Sun-Kyoo;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.3
    • /
    • pp.193-198
    • /
    • 2010
  • Melanin is synthesized by the melanocytes in basal layer of epidermis and distributed over all the layers of skin including corneocytes in stratum corneum, outermost layer of the epidermis. Melanin of corneocytes was stained using Fontana-Masson method and quantified by image analysis. The correlation between melanin contents and skin color value was estimated in the skin of 71 Korean women. Melanin covering area (MCA) showed good correlation with $L^*$ value and $ITA^{\circ}$ (Individual Typology Angle) (r = 0.6049, 0.6651, respectively). MCA can be used as new parameter for skin color study and has potential application for evaluating the efficacy of the skin whitening cosmetics.

A Study on the Stabilization of the Papain Enzyme in the Moderately Concentrated Anionic Surfactant System (음이온 계면활성제에서 파파인 효소의 안정도에 관한 연구)

  • Kim, Ji-Yeong;Kim, Jin-Woo;Kim, Yong-Jin;Lee, Jae-Wook;Lee, Hae-Kwang;Kang, Hak-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2007
  • Even in the moderately concentrated anionic surfactant system, some special encapsulation method can shield the papain enzyme from proteolytic attacks. The stabilization of enzyme has been a major issue for successful therapies. In this study, we first stabilized an enzyme, papain in the microcapsules by using polyols, polyethyleneglycol (PEG), poly-propyleneglycol (PPG), and PEG-PPG-PEG block copolymer. In the analysis of EDS and CLSM, it was demonstrated that polyols are effectively located in the interface of papain and polymer. Polyols located in the interface had an ability to buffer the external triggers by hydrophobic partitioning, preventing consequently the catalytic activity of papain in the micro-capsules. Second. we introduced multi-layer capsulation methods containing ion complex. Such a moderately concentrated anionic surfactant system as wash-off cleansers, surfactants and waters can cause instability of entrapped enzymes. Surfactants and water in our final products swell the surface of enzyme capsules and penetrate into the core so easily that we can not achieve the effect of enzyme, papain. In this case, the ion complex multi-layer capsule composed of sodium lauroyl sarcosinate and polyquaternium-6 could effectively prevent water from penetration into the core enzyme, followed by in vivo test, and evaluate the stratum corneum (SC) turn-over speed.

Betaine Induces Epidermal Differentiation by Enhancement of Autophagy through an mTOR-independent Pathway (Betaine의 mTOR 비의존적 자가포식 작용 촉진에 의한 표피 분화 유도 효과)

  • Choi, Seon-Guk;Kim, Mi-Sun;Kim, Jin-Hyun;Park, Sun Gyoo;Lee, Cheon Koo;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.95-101
    • /
    • 2018
  • The epidermis which is stratified by epithelial tissue renewal based on keratinocyte differentiation protects the organism from various environmental insults by forming a physical barrier. Autophagy is a mechanism which mediates lysosomal delivery and degradation of protein aggregates, damaged organelles and intracellular microorganisms. Recent reports have shown that autophagy has critical roles for proper terminal differentiation to stratum corneum via removing metabolic organelles and nuclei. However, whether increasing autophagy can activate epidermal differentiation is unknown. Here, we screened a library of natural single compounds and discovered that betaine specifically increased the LC3 positive cytosolic punctate vesicles and LC3-I to LC3-II conversion in HaCaT human keratinocyte cell line, indicating increased autophagy flux. mTOR pathway, which negatively regulates autophagy, was not affected by betaine treatment, suggesting betaine-induced autophagy through an mTOR-independent pathway. Betaine-induced autophagy was also observed in primary human keratinocyte and skin equivalent. Furthermore, epidermal thickness was increased in skin equivalent under betaine treatment. Overall, our finding suggests that betaine as a novel regulator of autophagy may induce epidermal turnover and improve the skin barrier abnormality of the aged epidermis.

The effects of Two Terpenoids, UA and ONA on Skin Barrier and Its Application

  • S. W. Lim;S. W. Jung;Kim, Bora;H. C. Ryoo;Lee, S. H.;S. K. Ahn
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.108-109
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol, prunol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ON A are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepatoprotective, anti-inflammatory, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. To clarify the effects of UA and ONA on skin barrier recovery, both flank skin of 8-12 weeks hairless mice were topically treated with samples (2mg/ml) after tape stripping, then measured recovery rate using TEWL on hairless mice. The recovery rate increased in UA and ONA treated groups at 6h more than 20% compared to vehicle treated group (p <0.05). For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to Vehicle group from 1 week without TEWL alteration (p<0.005). EM examination using Ru04 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA$\geq$UA>Vehicle). LM finding showed that stratum corneum was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Vehicle). Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber increasing by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory experiments were also confirmed in vivo findings. This result suggested that the effects of UA and ONA related to not only skin barrier but also collagen and elastic fibers. Taken together, UA and ONA can be relevant candidates to improve barrier function and pertinent agents for cosmetic applications.

  • PDF

Dermal Absorption and Body Distribution of $^{125}I-rhEGF$ in Hairless Mice (헤어리스마우스 피부 국소에 적용된 $^{125}I-rhEGF$의 피부흡수 및 체내 분포)

  • Lee, Jeong-Uk;Chung, Seok-Jae;Lee, Min-Hwa;Shim, Chang-Koo
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.737-748
    • /
    • 1997
  • Distribution of rhEGF in the skin, plasma and several organ tissues following topical application of $^{125}I-rhEGF$ (0.4${\mu}$Ci) solution in 25% Pluronic F-127 on 154$mm^2$ normal and damaged (burned and stripped) skins of hairless mice was examined. The radioactivity in the stripped skin tissues increased as a function of time, and was 10-20 times higher than that in the normal and burned skins. The fractions of intact drug in the skin tissues were 40-60% for the normal and burned skins, and 60-80% for the stripped skin. It indicates that the stratum corneum layer behaves as a barrier for the dermal penetration of the drug. The radioactivity in the plasma was much higher for the stripped skin than for the normal and burned skins. However, the concentration of intact drug in the stripped skin was comparable to those in the normal and burned skins indicating most severe degradation (or metabolism) of the drug in the stripped skin. As a result, the fraction of intact drug in the plasma was lowest for the stripped skin (<10%). Body organ distribution of the drug was much higher for the stripped skin. The concentration in the stomach. Both in total radioactivity and intact drug, showed more than 10-times higher value than in the other organs (liver, kidney and spleen). The fraction of intact drug in each organ tissue was below 10-20%. And generally lowest for the stripped skin. The lowest fraction of the drug for the stripped skin could not be explained by the activity of the aminopeptidases in the skin since it was lower for the stripped skin than for the normal skin. Thereover, the fraction of intact drug appears to be determined by the balance between dermal uptake and systemic elimination of the drug, for example. The mechanism of dermal uptake of rhEGF was examined by topical applying 200${\mu}$l of 25% Pluronic F-127 solution containing 0.4 ${\mu}$Ci of $^{125}I-rhEGF$ and 0.14${\mu}$Ci of $^{14}C$-inulin (a marker of passive diffusion). The radioactivity of $^{125}I-rhEGF$ at each sampling time point (0.5, 1, 2, 4 and 8hr) was correlated (p<0.05) with the corresponding radioactivity of $^{14}C$-inulin. It appears to indicate the rhEGF may be uptaken into the skins mainly by the passive diffusion. This hypothesis was supported by the constant specific binding of EGF to the skin homogenates regardless of the skin models. Receptor mediated endocytosis (RME) appears to contribute negligibly, if any, to the overall uptake process.

  • PDF

Synthesis of Novel Pseudo-ceramide and Its Properties (신규 유사세라마이드의 합성과 그 특성)

  • Kim, Jin-Guk;Kim, Kyoung-Tae;Park, Sun-Hee;Lee, Bang-Yong;Kim, Ki-Ho;Kim, Young-Heui
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • Ceramides, a constituent of stratum corneum lipids, play a crucial role in the formation and maintenance of the epidermal permeability barrier. As in many other skin disorders, atopic dermatitis and psoriasis show decrease and transformation of the ceramides. The application of ceramide has been demonstrated to be efficient in the repair of these skin disorders. Nevertheless, natural ceramides are still too expensive and small in quantity to be used as a cosmetic ingredient. Although a lot of pseudo-ceramides have been developed and on the market until now, those pseudo-ceramides did not fully meet the consumer's needs, therefore, there is still a demand for a novel pseudo-ceramides. We synthesized a novel pseudo-ceramide BPC-16 from 2-(2-amino-ethylamino)-ethanol(AEEA), which was characterized by structures having both amide bonds and hydroxyl groups as hydrophilic units, as well as two long alkyl chains. We formulated emulsion with BPC-16, cholesterol, stearic acid, and other components to make an emulsion. These emulsion showed a typical optical anisotropy on cross-polarized microscopy. This 'Maltese cross' appearance is a characteristic figure observed in concentric lamellar emulsion under cross-polarized microscopy. In cytotoxicity assay using MTT in monolayer and three dimension(3D) cell culture, a BPC-16 showed only negligible cytotoxicity up to the effective concentration for barrier repair and moisturization(less than 10 mM). In the measurement of TEWL, this BPC-16 showed significant recovery of water-retaining properties when it was topically applied to either SDS-induced dry skin or normal skin compared to that of base cream. This novel pseudo-ceramide BPC-16 showed as effective in skin barrier repair and moisturization as natural ceramides.