• Title/Summary/Keyword: stratification

Search Result 1,259, Processing Time 0.02 seconds

Analyzing Flow Variation and Stratification of Paldang Reservoir Using High-frequency W ater Temperature Data (고빈도 수온 자료를 이용한 팔당호의 성층과 흐름 변화 분석)

  • Ryu, In-Gu;Lee, Bo-Mi;Cho, Yong-Chul;Choi, Hwang-Jeong;Shin, Dong-Seok;Kim, Sang-Hun;Yu, Soon-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.392-404
    • /
    • 2020
  • The focus of this study was to quantify the thermal stratification and analyze the relationship between the stratification structure and the tributaries to understand flow variations in the Paldang Reservoir. The vertical distribution of the temperature and density gradients, and the depth and thickness of the thermocline were quantitatively calculated using a lake physics tool (rLakeAnalyzer) and high-frequency monitoring data. Based on a density gradient of 0.2 kg/㎥/m, the thermocline was formed from mid-May to early-September 2019 and the other periods were weakly stratified or mixed. The thickness of the thermocline was developed until 4.7 m and the depth of the thermocline was formed at a depth of 3 - 6 m at the front of the Paldang Reservoir. During the formation of the thermocline, the Namhangang and Gyeongancheon tributaries with relatively high water temperature (low-density) flowed into the upper layer of the reservoir, and the Bukhangang tributary with low water temperature (high-density) mainly affected the lower layer of the reservoir. This is because the density currents were formed due to the difference in the water temperature of the tributaries. The findings of this study may be used for constructing high-frequency monitoring and quantitative data analyses of reservoirs.

Projection of the Climate Change Effects on the Vertical Thermal Structure of Juam Reservoir (기후변화가 주암호 수온성층구조에 미치는 영향 예측)

  • Yoon, Sung Wan;Park, Gwan Yeong;Chung, Se Woong;Kang, Boo Sik
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.491-502
    • /
    • 2014
  • As meteorology is the driving force for lake thermodynamics and mixing processes, the effects of climate change on the physical limnology and associated ecosystem are emerging issues. The potential impacts of climate change on the physical features of a reservoir include the heat budget and thermodynamic balance across the air-water interface, formation and stability of the thermal stratification, and the timing of turn over. In addition, the changed physical processes may result in alteration of materials and energy flow because the biogeochemical processes of a stratified waterbody is strongly associated with the thermal stability. In this study, a novel modeling framework that consists of an artificial neural network (ANN), a watershed model (SWAT), a reservoir operation model(HEC-ResSim) and a hydrodynamic and water quality model (CE-QUAL-W2) is developed for projecting the effects of climate change on the reservoir water temperature and thermal stability. The results showed that increasing air temperature will cause higher epilimnion temperatures, earlier and more persistent thermal stratification, and increased thermal stability in the future. The Schmidt stability index used to evaluate the stratification strength showed tendency to increase, implying that the climate change may have considerable impacts on the water quality and ecosystem through changing the vertical mixing characteristics of the reservoir.

ROOT CHILLING DORMANCY REQUIREMENTS FOR AMERICAN GINSENG (PANAX QUINQUEFOLIUM L) (미국 인삼근의 저온 휴면 요구도)

  • Konsler T.R.
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.49-55
    • /
    • 1984
  • Dormant one-year-old ginseng roots were subjected to a range of stratification temperatures and time to define effective limits to these parameters and to quantify their effect on terminating dormancy. Effective storage temperatures tested ranged from $0^{\circ}C\;to\;9^{\circ}C.$ A low percentage of roots produced tops with as few as 30 days in stratification; however, 75 to 90 days were required for 100 percent emergence. Days to emergence, after planting, decreased with increased days in storage thru the maximum storage time of 120 days. The number of days of dormancy was relatively constant, near 126.5 days, over the range of effective temperatures and acceptable storage times. The minimum period of dormancy was associated with 75 days in storage at $3^{\circ}C.$ Root growth rate, after emergence, was greatest following 105 days of stratification. The frequency distribution of emergence with days in stratification suggests the potential of selecting for strains of ginseng with low chilling needs for satisfying dormancy requirements.

  • PDF

Numerical Analysis of Single Phase Thermal Stratification in both Cold Legs and Downcomer by Emergency Core Cooling System Injection : A Study on the Necessity to Consider Buoyancy Force Term (비상노심냉각계통 주입에 따른 저온관 및 강수관에서 단상 열성층 수치해석 : 부력항 고려 필요성에 관한 연구)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.654-662
    • /
    • 2017
  • When emergency core cooling system (ECCS) is operated during loss of coolant accident (LOCA) in a pressurized water reactor (PWR), pressurized thermal shock (PTS) phenomenon can occur as cooling water is injected into a cold leg, mixed with hot primary coolant, and then entrained into a reactor vessel. Insufficient flow mixing may cause temperature stratification and steam condensation. In addition, flow vibration may cause thermal stresses in surrounding structures. This will reduce the life of the reactor vessel. Due to the importance of PTS phenomenon, in this study, calculation was performed for Test 1 among six types of OECD/NEA ROSA tests with ANSYS CFX R.17. Predicted results were then compared to measured data. Additionally, because temperature difference between the hot coolant at the inlet of the cold leg and the cold cooling water at the inlet of the ECCS injection line is 200 K or more, buoyancy force due to density difference might have significant effect on thermal-hydraulic characteristics of flow. Therefore, in this study, the necessity to include buoyancy force term in governing equations for accurate prediction of single phase thermal stratification in both cold legs and downcomer by ECCS injection was numerically studied.

Lake Current in the Surface layer during Thermal Stratification on Shibere Lake, Yamanashi Prefecture, Japan (일본, 산이현 사미련호에 대한 성층기 표수층의 호류에 관하여)

  • ;Tadashi ARAI
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.2
    • /
    • pp.145-155
    • /
    • 2003
  • In this research, the primary factors affected to the formation of lake current of surface layer and thermal stratification of temperate lake have been analyzed, the daily change of water temperature, relationship with lake current and the research about the elements of meteorological phenomenon have been implemented. As a result, the lake current of surface layer occurring while the period of thermal stratification is showing the proportional difference of water temperature, thermal exchange caused by this has been known as the main energy source, and this is, secondly, considering as the interaction of the wind driven current by the prevailing wind. On the other hand, during the night time when the water surface is cooled, and it is considering as the vertical convection is occurring than horizontal circumfluence. Also, there exists the water mass, which is circumfluent counterclockwise and clockwise direction separately. The prevailing md is rather affected to the moving direction and moving speed of water mass, but it doesn't affect to the whole flowing direction.

The A Study on the Non-powered Circulator to Solve the Temperature Stratification of a Convection Heating Device during Winter Using 3D Printer (3D프린터를 이용한 겨울철 대류난방기구의 온도 성층화 해결을 위한 무동력 서큘레이터 디자인에 관한 연구)

  • Kang, Hee-Ra
    • Journal of Digital Convergence
    • /
    • v.19 no.6
    • /
    • pp.285-292
    • /
    • 2021
  • Due to the recent Corona 19 outbreak, camping culture is rapidly drawing attention from many people. Convective heating devices, which many campers use during winter, have the temperature stratification problem. To solve this problem, various power circulators are being used. Several non-powered circulators are also on sale, but the direction of the circulator is designed to be at the right angle relative to the convection heating mechanism and the circulator does not properly play the role of air circulation. To solve this problem, a 3D printer is used to design a non-powered circulator in the same direction as the convection heating mechanism. Electricity is generated without power using Peltier element and ceramic paper and the circulator is produced to withstand heat using HTPLA-CF filament. This study presents a method to solve the temperature stratification problem through efficient convective circulation. In addition, the purpose of this study is to manufacture products at a lower cost by using a 3D printer.

Seed Dormancy and Germination Characteristics of Prunus mandshurica (Maxim.) Koehne (개살구나무(Prunus mandshurica)의 종자휴면과 발아특성)

  • Seung Hyuk Yang;Young Hyun Kwon;Ye Eun Kim;Chung Ho Ko;Seung Youn Lee;Yong Ha Rhie
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.324-330
    • /
    • 2023
  • This study was conducted to determine the dormancy types and optimal germination conditions of Prunus mandshurica seeds. The pericarp of P. mandshurica seeds was presumed to be the reason for their poor water absorption. After the pericarp was removed with a razor blade, germination was observed to be less than 20.0% at all temperatures except at 5℃, suggesting the presence of physiological dormancy. Germination gradually increased at 5℃ after the removal of seed coat, reaching a final germination rate of 86.7% at 14 weeks of incubation. Based on these results, P. mandshurica seeds have a physiological dormancy. When seeds with removed pericarp were subjected to cold stratification, the germination percentage (rate) in the control group was low even at 16 weeks; however, the germination percentages in the 4, 8, and 12-week cold stratification groups were notably high with 93.3, 73.3, and 100.0%, respectively. The control group in the GA3 treatment experiment with seed coats removed showed minimal germination, but at 10 weeks, the germination percentage rose to 98.3% when treated with GA3 at 100 mg/L. Thus, it is necessary to scarify or completely remove the pericarp of P. mandshurica seeds to promote germination. After pericarp removal, it is important to subject the seeds to cold stratification at 5℃ for at least 4 weeks or treat them with GA3 at 100 mg/L.

Thyroid Nodules with Isolated Macrocalcifications: Malignancy Risk of Isolated Macrocalcifications and Postoperative Risk Stratification of Malignant Tumors Manifesting as Isolated Macrocalcifications

  • Hye Yun Gwon;Dong Gyu Na;Byeong-Joo Noh;Wooyul Paik;So Jin Yoon;Soo-Jung Choi;Dong Rock Shin
    • Korean Journal of Radiology
    • /
    • v.21 no.5
    • /
    • pp.605-613
    • /
    • 2020
  • Objective: To determine the malignancy risk of isolated macrocalcifications (a calcified nodule with complete posterior acoustic shadowing) detected on ultrasonography (US) and to evaluate the postoperative American Thyroid Association (ATA) risk stratification of malignant tumors manifesting as isolated macrocalcifications. Materials and Methods: A total of 3852 thyroid nodules (≥ 1 cm) of 3061 consecutive patients who had undergone biopsy between January 2011 and June 2018 were included in this study. We assessed the prevalence, malignancy rate, and size distribution of isolated macrocalcifications and evaluated the histopathologic features and postoperative ATA risk stratification of malignant tumors manifesting as isolated macrocalcifications. Results: Isolated macrocalcifications were found in 38 (1.2%) of the 3061 patients. Final diagnosis was established in 30 (78.9%) nodules; seven malignant tumors were diagnosed as papillary thyroid carcinomas (PTCs). The malignancy rate of the isolated macrocalcifications was 23.3% in the 30 nodules with final diagnoses and 18.4% in all nodules. Among the six surgically-treated malignant tumors, five (83.3%) had an extrathyroidal extension (ETE) (minor ETE 1, gross ETE 4), and two (33.3%) had macroscopic lymph node metastasis. Four (66.7%) malignant tumors were categorized as high-risk tumors, one as an intermediate-risk tumor, and one as a low-risk tumor using the ATA risk stratification. Histopathologically, out of the six malignant tumors, ossifications were noted in four (66.7%) and predominant calcifications in two (33.3%). Conclusion: The US pattern of isolated macrocalcifications (≥ 1 cm) showed an intermediate malignancy risk (at least 18.4%). All malignant tumors were PTCs, and most showed an aggressive behavior and a high or intermediate postoperative ATA risk.

Stratification and Destratification Processes in the Kangjin Bay, South Sea, Korea (남해 강진만에서 성층 형성과 성층 파괴 과정)

  • Jung, Kwagn-Young;Ro, Young-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.3
    • /
    • pp.97-109
    • /
    • 2010
  • This study analyzed stratification and destratification processes in the Kangjin Bay (KB), South Sea, Korea, driven by the Nam Gang Dam water discharge based on numerical modeling experiments. Model performances were evaluated in terms of skill scores for elevation, velocity, temperature and salinity, with scores mostly exceeding 90%. The models reproduced the tidal current, density-driven and wind-driven current. The stratification by fresh water input and destratification by the wind mixing was assessed in terms of the characteristic Richardson number (Ri) in that Ri increased from 0 to 7~20 during the Dam water discharge period, while vertical mixing and destratification followed by the typhoon passage showed Ri, 0 to 2.

Feedwater Flowrate Estimation Based on the Two-step De-noising Using the Wavelet Analysis and an Autoassociative Neural Network

  • Gyunyoung Heo;Park, Seong-Soo;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.192-201
    • /
    • 1999
  • This paper proposes an improved signal processing strategy for accurate feedwater flowrate estimation in nuclear power plants. It is generally known that ∼2% thermal power errors occur due to fouling Phenomena in feedwater flowmeters. In the strategy Proposed, the noises included in feedwater flowrate signal are classified into rapidly varying noises and gradually varying noises according to the characteristics in a frequency domain. The estimation precision is enhanced by introducing a low pass filter with the wavelet analysis against rapidly varying noises, and an autoassociative neural network which takes charge of the correction of only gradually varying noises. The modified multivariate stratification sampling using the concept of time stratification and MAXIMIN criteria is developed to overcome the shortcoming of a general random sampling. In addition the multi-stage robust training method is developed to increase the quality and reliability of training signals. Some validations using the simulated data from a micro-simulator were carried out. In the validation tests, the proposed methodology removed both rapidly varying noises and gradually varying noises respectively in each de-noising step, and 5.54% root mean square errors of initial noisy signals were decreased to 0.674% after de-noising. These results indicate that it is possible to estimate the reactor thermal power more elaborately by adopting this strategy.

  • PDF