• Title/Summary/Keyword: strata

Search Result 478, Processing Time 0.026 seconds

A Review of Middle Cretaceous to Early Miocene Petroleum System in the Zagros Fold Belt, Iran (이란 자그로스 습곡대의 백악기 중기-마이오세 초기 석유 시스템에 대한 고찰)

  • Woo, Juhwan;Rhee, Chul Woo
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.646-661
    • /
    • 2021
  • The Zagros fold-thrust belt formed from the collision of the Arabian and Eurasian plates during Cenozoic periods and extends for 2,000 km, from Turkey to the Hormuz Strait, in the northeast-southwest direction. Anticline traps in the front of the Zagros thrust fold hold approximately 8% of the world's petroleum reserves. Middle Cretaceous to Early Miocene petroleum systems of the belt have the largest original oil in place (OOIP). The oil is expelled from Kazhdumi and Pabdeh source rocks, and accumulated in the Asmari and Bangestan (including Sarvak and Ilam formations) reservoir rocks covered by the evaporitic Gachsaran and the marly Gurpi formations. The hydrocarbons trapped in the Asmari and Sarvak reservoirs are mainly charged (more than 90%) by the Kazhdumi Formation whereas the rest are charged by the Pabdeh Formation. In the Dezful Embayment, all the large high-relief anticlines have been drilled into, except in the Asmari, Sarvak and Khami formations, where a few anticlines of smaller size and deeper strata remain unexplored. Therefore, the exploration potential of these regions strengthens our understanding of the Zagros fold-thrust belt's petroleum system.

Lunar Exploration Employing a Quadruped Robot on the Fault of the Rupes Recta for Investigating the Geological Formation History of the Mare Nubium (4족 보행 로봇을 활용한 달의 직선절벽(Rupes Recta)의 단층면 탐사를 통한 구름의 바다(Mare Nubium) 지역의 지질학적 형성 연구)

  • Hong, Ik-Seon;Yi, Yu;Ju, Gwanghyeok
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.64-75
    • /
    • 2021
  • On the moon as well as the earth, one of the easiest ways to understand geological formation history of any region is to observe the stratigraphy if it is available, the order in which the strata build up. By analyzing stratigraphy, it is possible to infer what geological events have occurred in the past. Mare Nubium also has an unique normal fault called Rupes Recta that shows stratigraphy. However, a rover moving with wheels is incompetent to explore the cliff since the Rupes Recta has an inclination of 10° - 30°. Therefore, a quadruped walking robot must be employed for stable expedition. To exploration a fault with a four-legged walking robot, it is necessary to design an expedition route by taking account of whether the stratigraphy is well displayed, whether the slope of the terrain is moderate, and whether there are obstacles and rough texture in the terrain based on the remote sensing data from the previous lunar missions. For the payloads required for fault surface exploration we propose an optical camera to grasp the actual appearance, a spectrometer to analyze the composition, and a drill to obtain samples that are not exposed outward.

Content Analysis of the Mesozoic Geology of the Korean Peninsula in Earth Science II Textbooks: Focusing on Consistency within and among Textbooks, and with Scientific Knowledge (지구과학II 교과서의 한반도 중생대 지질 내용 분석: 교과서 내·교과서 간·과학 지식과의 일치 여부를 중심으로)

  • Jung, Chanmi;Yu, Eun-Jeong;Park, Kyeong-Jin
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.324-347
    • /
    • 2022
  • Geological information on the Korean Peninsula plays a significant role in science education because it provides a basic knowledge foundation for public use and creates an opportunity to learn about the nature of geology as a historical science. In particular, the Mesozoic Era, when the Korean Peninsula experienced a high degree of tectonic activity, is a pivotal period for understanding the geological history of the Korean Peninsula. This study aimed to analyze whether content regarding the geology of the Mesozoic Era are reliably and consistently presented in the 'Geology of the Korean Peninsula' section of Earth Science II textbooks based on the 2015 revised curriculum. Four textbooks for Earth Science II were analyzed, focusing on the sedimentary strata, tectonic movement, and granites of the Mesozoic Era. The analysis items were terms, periods, and rock distribution areas. The consistency within and among textbooks and of textbooks and scientific knowledge was analyzed for each analysis item. Various inconsistencies were found regarding the geological terms, periods, and rock distribution areas of the Mesozoic Era, and suggestions for its improvement were discussed based on these inconsistencies. It is essential to develop educational materials that are consistent with the latest scientific knowledge through collaboration between the scientific and educational communities.

A Study on the Automatic Digital DB of Boring Log Using AI (AI를 활용한 시추주상도 자동 디지털 DB화 방안에 관한 연구)

  • Park, Ka-Hyun;Han, Jin-Tae;Yoon, Youngno
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.119-129
    • /
    • 2021
  • The process of constructing the DB in the current geotechnical information DB system needs a lot of human and time resource consumption. In addition, it causes accuracy problems frequently because the current input method is a person viewing the PDF and directly inputting the results. Therefore, this study proposes building an automatic digital DB using AI (artificial intelligence) of boring logs. In order to automatically construct DB for various boring log formats without exception, the boring log forms were classified using the deep learning model ResNet 34 for a total of 6 boring log forms. As a result, the overall accuracy was 99.7, and the ROC_AUC score was 1.0, which separated the boring log forms with very high performance. After that, the text in the PDF is automatically read using the robotic processing automation technique fine-tuned for each form. Furthermore, the general information, strata information, and standard penetration test information were extracted, separated, and saved in the same format provided by the geotechnical information DB system. Finally, the information in the boring log was automatically converted into a DB at a speed of 140 pages per second.

Soil Depth Estimation and Prediction Model Correction for Mountain Slopes Using a Seismic Survey (탄성파 탐사를 활용한 산지사면 토심 추정 및 예측모델 보정)

  • Taeho Bong;Sangjun Im;Jung Il Seo;Dongyeob Kim;Joon Heo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.340-351
    • /
    • 2023
  • Landslides are major natural geological hazards that cause enormous property damage and human casualties annually. The vulnerability of mountainous areas to landslides is further exacerbated by the impacts of climate change. Soil depth is a crucial parameter in landslide and debris flow analysis, and plays an important role in the evaluation of watershed hydrological processes that affect slope stability. An accurate method of estimating soil depth is to directly investigate the soil strata in the field. However, this requires significant amounts of time and money; thus, numerous models for predicting soil depth have been proposed. However, they still have limitations in terms of practicality and accuracy. In this study, 71 seismic survey results were collected from domestic mountainous areas to estimate soil depth on hill slopes. Soil depth was estimated on the basis of a shear wave velocity of 700 m/s, and a database was established for slope angle, elevation, and soil depth. Consequently, the statistical characteristics of soil depth were analyzed, and the correlations between slope angle and soil depth, and between elevation and soil depth were investigated. Moreover, various soil depth prediction models based on slope angle were investigated, and corrected linear and exponential soil depth prediction models were proposed.

Bird Tracks from the Cretaceous Sanbukdong Formation, Gunsan City, Jeollabuk-do, Korea (전라북도 군산시 산북동층에서 발견된 백악기 새 발자국 화석)

  • Dong-Gwon Jeong;Cheong-Bin Kim;Kyu-Seong Cho;Kyung Soo Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.36-46
    • /
    • 2023
  • In this study, small bird tracks from the Cretaceous Sanbukdong Formation in Gunsan City, South Korea, were briefly described. Detrital zircon SHRIMP U-Pb dating was conducted of the tuffaceous sandstone from the formation to determine the depositional age of the vertebrate track-bearing strata. Small bird tracks are not well-preserved but divided into two types: two consecutive tracks and three isolated tracks. They are small, asymmetric, slender, functionally-tridactyl tracks, which lack a web between digits. The consecutive and isolated tracks were identified as Koreanaornis dodsoni? and Koreanaornis ichnosp., respectively. This study adds avian tracks to the Sanbukdong tetrapod track assemblage composed of theropods, ornithopods, and pterosaur tracks. According to the U-Pb dating, the estimated age of the Sanbukdong Formation is 112.5±5.8 Ma, regard as the Aptian Stage, representing the maximum depositional age for the Sanbukdong Formation. The Sanbukdong Formation can be correlated with the lower part of the Jinju Formation in the Gyeongsang Basin. Thus, small avian tracks may represent the oldest Korean occurrence of Koreanaornis.

Evaluation of Habitat Suitability of Major Honey Trees in the Mt. Gariwang and Mt. Yumeong through Machine Learning Approach (머신러닝기법을 활용한 가리왕산과 유명산 지역 주요 밀원수의 서식지 적합성 평가)

  • Yong-Ju Lee;Min-Ki Lee;Hae-In Lee;Chang-Bae Lee;Hyeong-Seok Sim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.311-325
    • /
    • 2023
  • This study was conducted to analyze the habitat suitability of the major honey trees including Kalopanax septemlobus Koidz., Prunus spp., Tilia spp., and Styrax obassia Siebold & Zucc. indigenous to mountain Gariwang and Yumeong using the machine learning approach (i.e., MaxEnt model). The AUC values of the model predictions were mostly above 0.7, and the results of the response curves showed that the environmental drivers that had effects on the habitat suitability of the major honey trees were elevation, mean annual precipitation, and mean annual temperature. These results indicate that climatic drivers along the elevation gradient are the main environmental drivers in explaining the distribution patterns of the major honey trees. In addition, the results of the response curves of Prunus spp. and Styrax obassia Siebold & Zucc. differed slightly in terms of slope and mean annual solar radiation as the main environmental drivers. The results of this study will be valuable for the establishment of honey tree forests and management plans for the natural and artificial forests in South Korea, as well as for the mapping the distribution of honey trees. Further studies at different regional levels, reflecting biotic drivers, will be needed to expand the production of honey and pollen at different strata and to produce honey annually.

Assessment of Safety Climate Metrics in Construction Safety Management (건설 안전관리를 위한 Safety Climate 평가요인별 중요도 분석 연구)

  • Han, Bum-Jin;Kim, Taehui;Son, Seunghyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.607-618
    • /
    • 2023
  • Pervasive research underscores the direct correlation between an enhanced safety climate and a marked reduction in accidents. The intricacies of safety climate are governed by three pivotal strata: organizational management, on-site operations, and the broader enterprise framework. Within an organizational context, sustaining optimal performance across these layers poses a considerable challenge, often attributable to the constraints of available managerial bandwidth. It becomes imperative, then, to conceive a phased enhancement blueprint for the safety climate. To orchestrate this blueprint with precision, a discerning understanding of the hierarchy of safety climate metrics is essential, which subsequently guides judicious managerial resource allocation. This investigation is anchored in elucidating the hierarchical significance of safety climate metrics through the Analytical Hierarchy Process(AHP). Implementing the AHP framework, both a questionnaire was disseminated and a subsequent analysis undertaken, culminating in the extraction of relative priorities of safety climate determinants. Consequent to this analysis, "workers' safety prioritization and risk aversion" emerged as the foremost dimension, holding a significance weight of 0.1900. Furthermore, within the detailed elements, "unwavering adherence to safety mandates amidst demanding operational constraints" ranked supreme, manifesting a weight of 0.6663. The findings encapsulated in this study are poised to be foundational in sculpting improvements at an institutional level and devising policies, all with the end goal of fostering an exemplar safety climate within construction arenas.

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure (지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구)

  • Kim, Tae Young;Ryu, Hee Hwan;Chong, Song-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

Tc-99m DMSA SPECT for Follow-Up of Non-Operative Treatments in Renal Injuries: A Prospective Single-Center Study

  • Sang-Geon Cho;Ki Seong Park;Jahae Kim;Jang Bae Moon;Ho-Chun Song;Taek Won Kang;Seong Hyeon Yu
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1017-1027
    • /
    • 2023
  • Objective: The assessment of cortical integrity following renal injuries with planar Tc-99m dimercaptosuccinic acid (DMSA) scintigraphy depends on measuring relatively decreased cortical uptake (i.e., split renal function [SRF]). We analyzed the additive values of the volumetric and quantitative analyses of the residual cortical integrity using single-photon emission computed tomography (SPECT) compared to the planar scintigraphy. Materials and Methods: This prospective study included 47 patients (male:female, 32:15; age, 47 ± 22 years) who had non-operatively managed renal injuries and underwent DMSA planar and SPECT imaging 3-6 months after the index injury. In addition to planar SRF, SPECT SRF, cortical volume, and absolute cortical uptake were measured for the injured kidney and both kidneys together. The correlations of planar SRF with SPECT SRF and those of SRF with volumetric/quantitative parameters obtained with SPECT were analyzed. The association of SPECT parameters with renal function, grades of renal injuries, and the risk of renal failure was also analyzed. Results: SPECT SRF was significantly lower than planar SRF, with particularly higher biases in severe renal injuries. Planar and SPECT SRF (dichotomized with a cutoff of 45%) showed 19%-36% of discrepancies with volumetric and quantitative DMSA indices (when dichotomized as either high or low). Absolute cortical uptake of the injured kidney best correlated with glomerular filtration rate (GFR) at follow-up (ρ = 0.687, P < 0.001) with significant stepwise decreases by GFR strata (90 and 60 mL/min/1.73 m2). Total renal cortical uptake was significantly lower in patients with moderate-to-high risk of renal failure than those with low risk. However, SRF did not reflect GFR decrease below 60 mL/min/1.73 m2 or the risk of renal failure, regardless of planar or SPECT (count- or volume-based SRF) imaging. Conclusion: Quantitative measurements of renal cortical integrity assessed with DMSA SPECT can provide more clinically relevant and comprehensive information than planar imaging or SRF alone.