• Title/Summary/Keyword: strains

Search Result 10,586, Processing Time 0.07 seconds

Approaches on Optimum Conditions for Agrobacterium-Mediated Transformation of Phalaenopsis (호접란의 Agrobacterium 이용 형질전환 시스템의 최적조건 구명을 위한 연구)

  • Na, Ae Sil;Been, Chul Gu;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Sensitivities of PLBs of four Phalaenopsis cultivars, P. 'Taisuco Windian', P. 'Nancy Amour', P. 'Pink Twilight' and P. 'Taipei Gold' to kanamycin, spectinomycin and hygromycin at different concentrations (0, 25, 50, 100, 200, and $400mg{\cdot}L^{-1}$) were examined. Hygromycin was favorable for selecting the transformants in the genetic transformation of Phalaenopsis as PLBs of four cultivars were all dead at even $25mg{\cdot}L^{-1}$ hygromycin. Responses of PLBs of P. 'Maki Watanabe' and P. 'Brother Lawrence' to DL-phosphinothricin (PPT) were determined at different concentrations (0, 0.1. 0.25, 0.5, 1.0, 2.0, 2.5, and $5.0mg{\cdot}L^{-1}$) and $0.5mg{\cdot}L^{-1}$ PPT was thought to be suitable for selecting the transformants of Phalaenopsis. The optimum conditions for Agrobacterium cocultivation with Phalaenopsis PLBs were examined using a two-step cocultivation method in Dtps. 'City Girl' and A. tumefaciens LBA4404. In the first infection period in a 1 : 10 suspension of Agrobacterium to a VW medium, 1 hr infection showed the highest PLB survival ratio. And then, PLBs were cocultivated with a bacterial strain and a 3-day cocultivation period was better for Phalaenopsis PLBs than a prolonged period. Agrobacterium tumefaciens strains LBA4404 (pTOK233) and EHA105 (pGA643) were used to compare their efficiency on the genetic transformation of Phalaenopsis PLBs. The PLBs infected with EHA105 survived more than those infected with LBA4404 after two days in a dark condition and two weeks in light condition on a selective medium. About 1,000 PLBs for each of P. 'Maki Watanabe' and P. 'Brother Lawrence', and each bacterial strain of AGL1 (pCAMBIA3301) and LBA4404 (pTOK233) were used for the regeneration of transgenic plants. The bacterial strain AGL1 had a higher genetic transformation efficiency than LBA4404, with no significant difference between cultivars. In this study, 11 hygromycin-resistant plantlets and 32 PPT-resistant plantlets were produced, but these putative transgenic plantlets need further examinations.

Preparation and Quality Characteristics of the Fermentation product of Ginseng by Lactic Acid Bacteria (FGL) (유산균을 이용한 발효인삼 제조 및 품질 특성)

  • Park, Soo-Jin;Kim, Dong-Hyun;Paek, Nam-Soo;Kim, Sung-Soo
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.88-94
    • /
    • 2006
  • Ginseng as a raw material for production of probiotic ginseng product by lactic acid bacteria (LAB) was evaluated in this study. Either white ginseng (WG) or red ginseng (RG) (1% or 5%, w/v) were directly inoculated with a 24 hold seed culture of twenty seven substrains of four different LAB ($1.0{\times}10^6CFU/ml$); Lactobacillus spp., Streptococcus/Enterococcus spp., Leuconostoc/Lactococcus spp. and Bifidobacterium spp., and incubated at $37^{\circ}C$ for 24 or 48 h. Among 27 kinds of LAB, seven substrains of Lactobacillus (MG208, MG311, MG315, MG501, MG501C, MG505, MG590) and one Bifidobacterium (MG723) were selected based on their dose dependent stimulation of the growth of LAB in the presence of ginseng and changes in pH, acidity and viable cell counts during fermentation were examined. Lactobacillus MG208 specifically was found to show the best growth on 5% RG and reached nearly $14.0{\times}10^8CFU/ml$ after 48 h of fermentation and produced the titratable acidity as $0.84{\pm}0.02%$, whereas the pH was significantly lowered from $6.80{\pm}0.01\;to\;3.42{\pm}0.02$. These results indicated that ginseng can be an appropriate material to prepare the fermentation product by several strains of LAB. Therefore we should further check whether probiotic ginseng product may have synergistic health benefits of both probiotics and ginseng to serve for vegetarians and lactose-allergic consumers.

Characteristics of Seed Germination in Heteropappus arenarius Kitam. Native to Korea as Influenced by Temperature (온도에 따른 자생 주걱쑥부쟁이의 종자발아특성)

  • Lee, Chang-Hee;Nam, Ki-Woong
    • Korean Journal of Plant Resources
    • /
    • v.22 no.2
    • /
    • pp.116-122
    • /
    • 2009
  • Heteropappus arenarius Kitam., an autumn-flowering biennial belonging to wild chrysanthemums, is found to be native in southeastern coastal area and Jeju island of Korea. It could play a good role for ground cover plants on a large-scale landscape area, especially, barren soil or sloping hillside. This study was initiated to screen optimum germination temperature influenced by local strain and harvesting stage of H. arenarius. The following was the response of seed germination between local strain and temperature. The average of final germination percentage (FG) was the highest in 'Guryongpo' (89.7%) among four local strains, followed by 'Gujwa' (87.3%), 'Gampo' (87.3%), and 'HKNU-I' (71.5%). The average of $T_{50}$ was shorter in 'Gujwa' (3.6 d) and 'Guryongpo' (4.0 d) than the others. The average of FG and $T_{50}$ was the highest as 76.2% and shortest as 3.6 d in $20^{\circ}C$, respectively, followed by $30^{\circ}C$, $25^{\circ}C$, and $15^{\circ}C$. In case of 'Gujwa', however, FG and T50 was higher in $20^{\circ}C$ and shorter in $15^{\circ}C$ than others. In the relationship between harvesting stage and temperature, the average of FG was greatly higher in Stage III (90.7%) and Stage IV (88.6%) than the others including Stage II (35.7%) and Stage I (26.0%). The average of $T_{50}$ was shorter in Stage IV (3.7 d) and Stage III (4.3 d) than the others, which showed less than 50% of FG. Nevertheless, the available range of seed harvesting stage was from Stage I to Stage IV because H. arenarius seeds could germinate at all stages. In conclusion, it was recommended that the optimum temperature and harvesting stage was $20^{\circ}C$ and Stage $III{\sim}IV$, respectively, for seed germination of H. arenarius.

Chemical components and hepato-protective effect of Lentinula edodes fermented by lactic acid bacteria (표고 유산균 발효물의 성분 및 간기능 보호 효과)

  • Im, Seung-Bin;Kim, Kyung-Je;Jin, Seong-Woo;Koh, Young-Woo;Ha, Neul-I;Jeong, Hee-Gyeong;Lee, Jae-Keun;Yun, Kyeong-Won;Seo, Kyoung-Sun
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.191-199
    • /
    • 2021
  • This study was conducted to improve the useful components and biological activity of Lentinula edodes fermented by lactic acid bacteria (LAB). Three LAB strains (Lactobacillus brevis KCCM 11904, L. plantarum KCCM 354469, and L. fermentum KCCM 12116) were inoculated and used for L. edodes hot water extract (10%, 20%, 30%) fermentation. LAB fermentation of L. edodes hot water extracts decreased pH and thus were more acidic than non-fermented L. edodes hot water extract. β-glucan and ergothioneine contents were increased by L. edodes in a concentration-dependent manner. The ergothioneine and β-glucan contents were highest in fermented with 30% L. edodes hot water extract fermented by L. plantarum and L. brevis (40.48 mg/100 g and 13.94%, respectively). The hepato-protective effect of fermented L. edodes hot water extracts by the three LAB were tested using Sprague-Dawley rat primary hepatocytes. In primary hepatocytes obtained following liver injury induced by acetaminophen, fermented L. edodes hot water extracts by the three LAB showed protective effects, as evident by reduction of the aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase liver markers. The collective results indicate that the fermented L. edodes hot water extracts obtained using LAB are potentially valuable in preventing or treating liver disease.

Effect of Physical Control Technology on Aspergillus ochraceus Reduction (물리적 제어기술이 Aspergillus ochraceus 저감화에 미치는 영향)

  • Lee, Eun-Seon;Kim, Jong-Hui;Kim, Bu-Min;Oh, Mi-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.447-453
    • /
    • 2021
  • In this study, the effectiveness of physical control technology, a combined light sterilization (LED, UV) and hot water treatment in reducing Aspergillus ochraceus for food production environment was investigated. In brief, 1 mL aliquot of A. ochraceus spore suspension (107-8 spore/mL) was inoculated onto stainless steel chips, which was then dried at 37℃, and each was subjected to different physical treatment. Treatments were performed for 0.5, 1, 2, 5, 8, and 11 hours to reduce the strains using a light-emitting diode, but no significant difference was confirmed among the treatments. However, a significant reduction was observed on the chips treated with UV-C exposure and hot water immersion. After being treated solely with 360 kJ/m2 of UV-C on stainless steel chip, the fungi were significantly reduced to 1.27 log CFU/cm2. Concerning the hot water treatment, the initial inoculum amount of 6.49 log CFU/cm2 was entirely killed by immersion in 83℃ water for 5 minutes. Maintaining a high temperature for 5 minutes at the site is difficult. Thus, considering economic feasibility and usability, we attempted to confirm the appropriate A. ochraceus reduction conditions by combining a relatively low temperature of 60℃ and UV rays. With the combined treatments, even in lukewarm water, A. ochraceus decreased significantly through the increases in the immersion time and the amount of UV-C irradiation, and the yield was below the detection limit. Based on these results, if work tools are immersed in 60℃ lukewarm water for 3 minutes and then placed in a UV sterilization device for more than 10 minutes, the possibility of A. ochraceus cross-contamination during work is expected to be reduced.

Preservative Efficacies according to the Composition of 1, 3-Butylene Glycol and Alkane Diols in Cosmetics (화장품에서 1,3-부틸렌 글라이콜 및 알칸디올계 조성에 따른 방부력에 관한 연구)

  • Suh, Ji Young;Yun, Mid Eum;Lee, Ye Seul;Xuan, Song Hua;Park, Dong Soon;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • In recent years, parabens used as preservatives in cosmetics have become a problem of human safety. Therefore, in this study, we tried to evaluate the preservative efficacy of 1,3-butylene glycol, 1,2-hexanediol, and 1,2-pentanediol as a preservative system to replace parabens. 1,3-Butylene glycol was added to cosmetic creams at a concentration of between 5 and 25%. The preservative efficacy of 1,3-butylene glycol was determined using a M-3 challenge test, as recommended by the Personal Care Products Council (formally CTFA). The alkane diols, such as 1,2-hexanediol and 1,2-pentanediol, were assessed in a similar manner. An evaluation of the preservative efficacy of 1,3-butylene glycol revealed that it was effective against all tested microbial strains at a concentration of 25%. We also investigated the efficacy of combinations of 0.3% phenoxyethanol and 0.1% ethylhexylglycerin. Finally, we tested the alkane diols, including 1,2-hexanediol and 1,2-pentanediol, as an alternative to the preservative 0.3% phenoxyethanol. Both 1% 1,2-hexanediol and 1% 1,2-pentanediol demonstrated preservative efficacy. Taken together, our study demonstrated that the formulation of 25% 1,3-butylene glycol and 0.1% ethylhexylglycerin, 1% 1,2-hexanediol, and 1% 1,2-pentanediol had the best preservative efficacy of the compositions tested. Thus, this study suggests that the formulation is a possibility of substituting parabens preservatives, which has been used in cosmetics and has become a safety issue.

Antibiotics Susceptability of Streptococcus pneumoniae Isolated from Single Tertiary Childrens' Hospital Since 2014 and Choice of Appropriate Empirical Antibiotics (최근 4년간 국내 단일 의료기관을 내원한 소아청소년에서 분리된 폐구균의 항생제 감수성 양상 분석)

  • Jung, Jiwon;Yoo, Ree Nar;Sung, Hungseop;Kim, Mina;Lee, Jina
    • Pediatric Infection and Vaccine
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Purpose: We investigated the distribution and antimicrobial resistance of pneumococcal isolates from hospitalized children at Asan Medical Center for recent 4 years, and aimed to recommend proper choice of empirical antibiotics for pneumococcal infection. Methods: From March 2014 to May 2018, children admitted to Asan Medical Center Childrens' Hospital with pneumococcal infection were subjected for evaluation of minimal inhibitory concentration (MIC) for ${\beta}-lactams$ and macrolide antibiotics. Patient's age, underlying disease, gender were retrospectively collected. Using Monte Carlo simulation model and MIC from our study, we predicted the rate of treatment success with amoxicillin treatment. Results: Sixty-three isolates were analyzed including 20.6% (n=13) of invasive isolates, and 79.4% (n=50) of non-invasive isolates; median age were 3.3 years old, and 87.3% of the pneumococcal infections occurred to children with underlying disease. Overall susceptibility rate was 49.2%, 68.2%, and 74.6% for amoxicillin, parenteral penicillin, and cefotaxime respectively. 23.8% and 9.5% of the isolates showed high resistance for amoxicillin, and cefotaxime. Only 4.8% (n=3) were susceptible to erythromycin. Monte Carlo simulation model revealed the likelihood of treatment success was 46.0% at the dosage of 90 mg/kg/day of amoxicillin. Conclusions: Recent pneumococcal isolates from pediatric patients with underlying disease revealed high resistance for amoxicillin and cefotaxime, and high resistance for erythromycin. Prudent choice of antibiotics based on the local data of resistance cannot be emphasized enough, especially in high risk patients with underlying disease, and timely vaccination should be implemented for prevention of the spread of resistant strains.

Hydrolysis of Non-digestible Components of Soybean Meal by α-Galactosidase from Bacillus coagulans NRR1207 (Bacillus coagulans NRR1207이 생산하는 α-galactosidase에 의한 대두박 비소화성분의 가수분해)

  • Ra, Seok Han;Renchinkhand, Gereltuya;Park, Min-gil;Kim, Woan-sub;Paik, Seung-Hee;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1347-1353
    • /
    • 2018
  • The fermentation of non-digestible soy meal can convert polysaccharides into many compounds that have a wide variety of biological functions. Bacillus strains are capable of hydrolyzing non-digestible saccharides, such as melibiose, raffinose, and stachyose, found in soy meal components. A highly active ${\alpha}$-galactosidase (${\alpha}$-d-galactoside galactohydrolase, EC 3.2.1.22) was isolated from a bacterium in a traditional Korean fermented medicinal herb preparation. The isolate, T2-16, was identified as Bacillus coagulans based on its 16S rRNA sequence and biochemical properties, and the strain was named Bacillus coagulans NRR-1207. When incubated in 10%(w/v) skim milk, Bacillus coagulans NRR1207 caused a decrease in the pH of the culture medium, as well as an increase in titratable acidity and viable cell counts. This strain also showed higher activities of ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\alpha}$-glucosidase, naphthol-AS-BO-phosphohydrolase, and acid phosphatase when compared to other enzymes. It hydrolyzed oligomeric substrates, such as raffinose and stachyose, and liberated galactose, indicating that the Bacillus coagulans NRR1207 ${\alpha}$-galactosidase hydrolyzed the ${\alpha}$-1,6 glycoside linkage. These results suggest that the decreased stachyose and raffinose contents observed in fermented soy meal are due to this ${\alpha}$-galactosidase activity. Bacillus coagulans NRR1207 therefore has potential probiotic activity and could be utilized in feed manufacturing, as well as for hydrolyzing non-digestible soy meal components.

Characteristic study and optimization of culture conditions for Bacillus amyloliquefaciens SRCM 100731 as probiotic resource for companion animal (Bacillus amyloliquefaciens SRCM 100731의 반려 동물용 프로바이오틱스 소재로서의 특성 규명 및 배양 조건 최적화)

  • Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Su-Ji;Seo, Ji Won;Ha, Gwangsu;Jeong, Seong-Yeop;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.384-397
    • /
    • 2018
  • The aim of this study is to screen the strains of Bacillus spp. possessing safety, probiotic activity, and so on, which can be utilized as probiotic resource for using the feed and supplement food of companion animal. About 300 isolates were isolated from traditional Korean sauces, four isolates that did not have or produce the six kinds of B. cereus type vomiting and diarrhea toxin genes, ${\beta}$-hemolytic, and three kinds of carcinogenic enzymes were selected. Antibiotic gene retention, cell surface hydrophobicity, antibiotic sensitivity, and glucose utilization were analyzed for four isolates, and finally SRCM 100731 was selected. SRCM 100731 was named as Bacillus amyloliquefaciens SRCM 100731 16S rRNA sequencing analysis, and carried out optimization of cell growth for industrial applications such as pet food and feed. The effects of 14 different components on cell growth were investigated and three significant positive factors, molasses, sodium chloride, and potassium chloride were selected as the main factors based on a Plackett-Burman design. In order to find out optimal concentration on each constituent, we carried out central composite design. The predicted optimized concentrations were 7% molasses, 1.1% sodium chloride, 0.5% potassium chloride. Finally, an overall about 7-fold increase in dry cell weight yield ($12.6625{\pm}0.0658g/L$) was achieved using the optimized medium compared with the non-optimized medium ($1.8273{\pm}0.0214g/L$). This research is expected to be highly utilized in the growing pet industry by establishing optimal cultivation conditions for industrial application as well as screening Bacillus amyloliquefaciens SRCM 100731 as probiotic resource for companion animal.

Optimization of cultivation conditions for pullulan production from Aureobasidium pullulans MR by response surface methodology (반응표면분석법을 이용한 Aureobasidium pullulans MR의 풀루란 생산을 위한 배양 조건 최적화)

  • Jo, Hye-Mi;Kim, Ye-Jin;Yoo, Sang-Ho;Kim, Chang-Mu;Kim, KyeWon;Park, Cheon-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.195-203
    • /
    • 2021
  • Aureobasidium pullulans, a black yeast, produces pullulan, a linear α-glucan composed of maltotriose repeating units linked by α(1→6)-glycosidic linkages. Pullulan can be widely used in food, cosmetic, and biotechnology industries. In this study, we isolated eight strains of A. pullulans from Forsythia koreana, Magnolia kobus DC., Spiraea prunifolia var. simpliciflora, Cornus officinalis, Cerasus, and Hippophae rhamnoides. Among them, A. pullulans MR was selected as the best pullulan producer. The effects of a carbon source, a nitrogen source, and pH on pullulan production were examined. The optimal cultivation conditions for pullulan production by A. pullulans MR were determined by response surface methodology as 15% sucrose, 0.4% soy peptone, and an initial pH of 7 at 26℃. Under these conditions, the predicted pullulan production was 47.6 g/L, which was very close to the experimental data (48.9 g/L).