• Title/Summary/Keyword: strain-softening model

Search Result 153, Processing Time 0.026 seconds

Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects

  • Huang, Xiaoping;Shan, Huafeng;Chu, Weishen;Chen, Yongji
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.101-115
    • /
    • 2022
  • Some researchers pointed out that the nonlocal cantilever models do not predict the dynamic softening behavior for nanostructures (including nanobeams) with clamped-free (CF) ends. In contrast, some indicate that the nonlocal cantilever models can capture the stiffness softening characteristics. There are substantial differences on this issue between them. The vibration analysis of porosity-dependent functionally graded nanoscale tubes with variable boundary conditions is investigated in this study. Using a modified power-law model, the tube's porosity-dependent material coefficients are graded in the radial direction. The theory of nonlocal strain gradients is used. Hamilton's principle is used to derive the size-dependent governing equations for simply-supported (S), clamped (C) and clamped-simply supported (CS). Following the solution of these equations by the extended differential quadrature technique, the effect of various factors on vibration issues was investigated further. It can be shown that these factors have a considerable effect on the vibration characteristics. It also can be found that our numerical results can capture the unexpected softening phenomena for cantilever tubes.

Constitutive modeling for rock joints of tunnel (터널 암반절리에 대한 구성방정식 모델링)

  • Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.101-111
    • /
    • 2002
  • The purpose of this research is to develop improved model for joints of tunnel based on Disturbed State Concept (DSC) model. DSC model is verified with respect to comprehensive laboratory tests performed by Schneider and back prediction results. Based on results of this research, it can be stated that DSC model is capable of characterizing the strain softening and dilative behavior of rough granite joints under four different constant normal stresses.

  • PDF

Simulations of spacing of localized zones in reinforced concrete beams using elasto-plasticity and damage mechanics with non-local softening

  • Marzec, I.;Bobinski, J.;Tejchman, J
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.377-402
    • /
    • 2007
  • The paper presents quasi-static plane strain FE-simulations of strain localization in reinforced concrete beams without stirrups. The material was modeled with two different isotropic continuum crack models: an elasto-plastic and a damage one. In case of elasto-plasticity, linear Drucker-Prager criterion with a non-associated flow rule was defined in the compressive regime and a Rankine criterion with an associated flow rule was adopted in the tensile regime. In the case of a damage model, the degradation of the material due to micro-cracking was described with a single scalar damage parameter. To ensure the mesh-independence and to capture size effects, both criteria were enhanced in a softening regime by nonlocal terms. Thus, a characteristic length of micro-structure was included. The effect of a characteristic length, reinforcement ratio, bond-slip stiffness, fracture energy and beam size on strain localization was investigated. The numerical results with reinforced concrete beams were quantitatively compared with corresponding laboratory tests by Walraven (1978).

On the large plastic deformation of tubular beams under impact loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.463-474
    • /
    • 1995
  • When a tubular cantilever beam is loaded by a dynamic force applied transversely at its tip, the strain hardening of the material tends to increase the load carrying capacity and local buckling and cross-sectional overlization occurring in the tube section tends to reduce the moment carrying capacity and results in structural softening. A theoretical model is presented in this paper to analyze the deformation of a tubular beam in a dynamic response mode. Based on a large deflection analysis, the hardening/softening M-${\kappa}$ relationship is introduced. The main interest is on the curvature development history and the deformed configuration of the beam.

2-dimensional analytical method of RC column considering nonlinearity of strain distribution in out-of-plane direction (면외 변형률 분포의 비선형성을 고려한 RC 기둥의 2차원 해석에 관한 연구)

  • 김익현;이종석;정혁창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.621-624
    • /
    • 2003
  • The columns with large widths in out-of-plane direction fail showing the high nonlinearity of strain distribution. In order to predict the nonlinear behavior with reasonable accuracy in 2 dimensional analysis the material models taking this characteristic into account are indispensible. In this study equivalent softening model is developed which releases the same amount of energy at failure as that of 3-D analysis. Its validity is confirmed by comparing the analysis result with that of 3-D.

  • PDF

Numerical Analysis of Rock Behavior with Crack Model Implementation (균열모형을 이용한 암석거동의 수치해석)

  • 전석원
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1999.03a
    • /
    • pp.25-31
    • /
    • 1999
  • 암석 내에 포함된 불연속면으로 인하여 암석은 압축하중 하에서 복잡한 거동을 한다. 이러한 복잡한 거동은 변형률강화(strain hardening), 변형률연화(strain softening), 부피팽창(dilatancy)등의 비선형 거동을 포함하는데, 이들은 균열의 성장, 상호작용(interaction), 연합(coalescence) 등을 통하여 발생한다(Brace et al., 1972; Kranz, 1983). 이와 같은 암석의 비선형적 거동을 설명하기 위하여 여러 형태의 균열모형이 개발된 바 있다(Costin, 1985; Nemat-Nasser & Horii, 1982; Wang & Kemeny, 1993; Jeon, 1998). (중략)

  • PDF

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.

Bifurcation analysis of over-consolidated clays in different stress paths and drainage conditions

  • Sun, De'an;Chen, Liwen;Zhang, Junran;Zhou, Annan
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.669-685
    • /
    • 2015
  • A three-dimensional elastoplastic constitutive model, also known as a UH model (Yao et al. 2009), was developed to describe the stress-strain relationship for normally consolidated and over-consolidated soils. In this paper, an acoustic tensor and discriminator of bifurcation for the UH model are derived for the strain localization of saturated clays under undrained and fully and partially drained conditions. Analytical analysis is performed to illustrate the points of bifurcation for the UH model with different three-dimensional stress paths. Numerical analyses of cubic specimens for the bifurcation of saturated clays under undrained and fully and partially drained conditions are conducted using ABAQUS with the UH model. Analytical and numerical analyses show the similar bifurcation behaviour of overconsolidated clays in three-dimensional stress states and various drainage conditions. The results of analytical and numerical analyses show that (1) the occurrence of bifurcation is dependent on the stress path and drainage condition; and (2) bifurcation can appear in either a strain-hardening or strain-softening regime.

Rate-dependent shearing response of Toyoura sand addressing influence of initial density and confinement: A visco-plastic constitutive approach

  • Mousumi Mukherjee;Siddharth Pathaka
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.197-208
    • /
    • 2023
  • Rate-dependent mechanical response of sand, subjected to loading of medium to high strain rate range, is of interest for several civilian and military applications. Such rate-dependent response can vary significantly based on the initial density state of the sand, applied confining pressure, considered strain rate range, drainage condition and sand morphology. A numerical study has been carried out employing a recently proposed visco-plastic constitutive model to explore the rate-dependent mechanical behaviour of Toyoura sand under drained triaxial loading condition. The model parameters have been calibrated using the experimental data on Toyoura sand available in published literature. Under strain rates higher than a reference strain rate, the simulation results are found to be in good agreement with the experimentally observed characteristic shearing behaviour of sand, which includes increased shear strength, pronounced post-peak softening and suppressed compression. The rate-dependent response, subjected to intermediate strain rate range, has further been assessed in terms of enhancement of peak shear strength and peak friction angle over varying initial density and confining pressure. The simulation results indicate that the rate-induced strength increase is highest for the dense state and such strength enhancements remain nearly independent of the applied confinement level.

A Prediction of Behavior of Compacted Granite Soils Based on the Elasto-Plastic Constitutive Model (탄,소성 구성모델을 이용한 다짐화강토의 응력-변형률 거동예측)

  • 이강일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.148-158
    • /
    • 1998
  • The aims of this study are to evaluate the application on the stress-strain behavior of granite Soil using Lade's double work hardening constitutive model based on the theories of elasticity and plasticity. From two different sites of construction work, two disturbed and compacted weathered granite samples which are different in partical size and degree of weathering respectively were obtained. The specimen employed were sampled at Iksan and Pochon in order to predict the constitutive model. Using the computer program based on the regression analysis, 11 soil parameters for the model were determined from the simple tests such as an isotropic compression-expansion test and a series of drained conventional triaxial tests. In conclusion, it is shown that Lade's double work hardening model gives the good applicability for processing of stress-strain, work-hardening, work-softening and soil dilatancy. Therefore, this model in its present form is applicable to the compacted decomposed granite soil.

  • PDF