• Title/Summary/Keyword: strain-rate

Search Result 3,132, Processing Time 0.03 seconds

Effect of strain rate and stress triaxiality on fracture strain of 304 stainless steels for canister impact simulation

  • Seo, Jun-Min;Kim, Hune-Tae;Kim, Yun-Jae;Yamada, Hiroyuki;Kumagai, Tomohisa;Tokunaga, Hayato;Miura, Naoki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2386-2394
    • /
    • 2022
  • In this paper, smooth and notched bar tensile tests of austenitic stainless steel 304 are performed, covering four different multi-axial stress states and six different strain rate conditions, to investigate the effect of the stress triaxiality and strain rate on fracture strain. Test data show that the measured true fracture strain tends to decrease with increasing stress triaxiality and strain rate. The test data are then quantified using the Johnson-Cook (J-C) fracture strain model incorporating combined effects of the stress triaxiality and strain rate. The determined J-C model can predict true fracture strain overall conservatively with the difference less than 20%. The conservatism in the strain-based acceptance criteria in ASME B&PV Code, Section III, Appendix FF is also discussed.

Effect of Strain Rate on the Deformation and Cracking Behaviors of ITO/PET Sheets with 45 ohms/sq. Sheet Resistance (면저항 45 ohms/sq.의 ITO/PET Sheets의 변형률 속도에 따른 균열 형성 거동)

  • Kim, Jin-Yeol;Hong, Sun-Ig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.67-73
    • /
    • 2009
  • The stress-strain behavior and its effects on the crack initiation and growth of ITO film on PET substrate with a sheet resistance of 45 ohms/sq were investigated. Electrical resistance increased gradually at the strain of 0.7% in the elastic to plastic transition region of the stress strain curves. Numerous cracks were observed after 1% strain and the increase of the resistance can be linked to the cracking of ITO thin films. The onset strain for the increase of resistance increased with increasing strain rate, suggesting the crack initiation is dependent on the strain rate. Upon loading, the initial cracks perpendicular to the tensile axis were observed and propagated the whole sample width with increasing strain. The spacing between horizontal cracks is thought to be determined by the fracture strength and the interfacial strength between ITO and PET. The crack density increased with increasing strain. The spacing between horizontal cracks (perpendicular to the stress axis) increased with decreasing strain rate, The increase of crack density with decreasing strain rate can be attributed to the higher fraction of the plastic strain to the total strain at a given total strain. As the strain increased over 5% strain, cracks parallel to the stress axis were developed and increased in number with strain, accompanied by drastic increases of resistance.

Modeling on the Nonlinear Rate Sensitivity of Flow Stress (유동응력의 비선형 속도 민감도에 대한 모델링)

  • Ho, Kwang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.670-676
    • /
    • 2004
  • Most metallic materials and alloys show rate independence or negative rate sensitivity in some temperature region when dynamic strain aging occurs. It is generally recognized that negative rate sensitivity is an essential feature of dynamic strain aging that can depend on strain and/or strain rate. The unified viscoplasticity theory based on overstress is applied to reproduce a change of rate sensitivity type that depends on strain or strain rate. This is accomplished through the introduction of a single new term in the growth law of the equilibrium stress, which is a tensor valued state variable of the model. It is also shown that the new term can be used to reproduce a dramatic increase of rate sensitivity in dynamic plasticity.

Strain-rate-dependent consolidation characteristics of Busan clay (부산점토의 변형률 속도 의존적인 압밀특성)

  • Kim, Yun-Tae;Jo, Sang-Chan;Jo, Gi-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.240-247
    • /
    • 2005
  • In order to analyze effects of strain rate on consolidation characteristics on Busan clay, a series of constant rate of strain(CRS) consolidation tests with different strain rate and incremental loading test(ILT) were performed. From experimental test results, it was found that the preconsolidation pressure was dependent on the corresponding strain rate occurred during consolidation process. Also, consolidation curves normalized with respect to preconsolidation pressure gave a unique stress-strain curve. Coefficient of consolidation and permeability estimated from CRS test had a tendancy to converge to a certain value at normally consolidated range regardless of strain rate. An increase in excess pore pressure without change of total stress was noted on the incremental loading test after the end of loading.

  • PDF

Rate-sensitive analysis of framed structures part II: implementation and application to steel and R/C frames

  • Fang, Q.;Izzuddin, B.A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.239-256
    • /
    • 1997
  • The companion paper presents a new three-parameter model for the uniaxial rate-sensitive material response, which is based on a bilinear static stress-strain relationship with kinematic strain-hardening. This paper extends the proposed model to trilinear static stress-strain relationships for steel and concrete, and discusses the implementation of the new models within an incremental-iterative solution procedure. For steel, the three-parameter rate-function is employed with a trilinear static stress-strain relationship, which allows the utilisation of different levels of rate-sensitivity for the plastic plateau and strain-hardening ranges. For concrete, on the other hand, two trilinear stress-strain relationships are used for tension and compression, where rate-sensitivity is accounted for in the strain-softening range. Both models have been implemented within the nonlinear analysis program ADAPTIC, which is used herein to provide verification for the models, and to demonstrate their applicability to the rate-sensitive analysis of steel and reinforced concrete structures.

Tensile strength of unidirectional CFRP laminate under high strain rate

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.167-180
    • /
    • 2007
  • The tensile strength of unidirectional carbon fiber reinforced plastics under a high strain rate was experimentally investigated. A high-strain-rate test was performed using the tension-type split Hopkinson bar technique. In order to obtain the tensile stress-strain relations, a special fixture was used for the impact tensile specimen. The experimental results demonstrated that the tensile modulus and strength in the longitudinal direction are independent of the strain rate. In contrast, the tensile properties in the transverse direction and the shear properties increase with the strain rate. Moreover, it was observed that the strain-rate dependence of the shear strength is much stronger than that of the transverse strength. The tensile strength of off-axis specimens was measured using an oblique tab, and the experimental results were compared with the tensile strength predicted based on the Tsai-Hill failure criterion. It was concluded that the tensile strength can be characterized quite well using the above failure criterion under dynamic loading conditions.

Seismic Analysis on Recycled Aggregate Concrete Frame Considering Strain Rate Effect

  • Wang, Changqing;Xiao, Jianzhuang;Sun, Zhenping
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.307-323
    • /
    • 2016
  • The nonlinear behaviors of recycled aggregate concrete (RAC) frame structure are investigated by numerical simulation method with 3-D finite fiber elements. The dynamic characteristics and the seismic performance of the RAC frame structure are analyzed and validated with the shaking table test results. Specifically, the natural frequency and the typical responses (e.g., storey deformation, capacity curve, etc.) from Model 1 (exclusion of strain rate effect) and Model 2 (inclusion of strain rate effect) are analyzed and compared. It is revealed that Model 2 is more likely to provide a better match between the numerical simulation and the shaking table test as key attributes of seismic behaviors of the frame structure are captured by this model. For the purpose to examine how seismic behaviors of the RAC frame structure vary under different strain rates in a real seismic situation, a numerical simulation is performed by varying the strain rate. The storey displacement response and the base shear for the RAC frame structure under different strain rates are investigated and analyzed. It is implied that the structural behavior of the RAC frame structure is significantly influenced by the strain rate effect. On one hand, the storey displacements vary slightly in the trend of decreasing with the increasing strain rate. On the other hand, the base shear of the RAC frame structure under dynamic loading conditions increases with gradually increasing amplitude of the strain rate.

Dynamic Constitutive Equations of Auto-body Steel Sheets with the Variation of Temperature (II) - Flow Stress Constitutive Equation - (차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (II) - 온도에 따른 동적 구성방정식 -)

  • Lee, Hee-Jong;Song, Jung-Han;Park, Sung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.182-189
    • /
    • 2007
  • This paper is concerned with the empirical flow stress constitutive equation of steel sheets for an auto-body with the variation of temperature and strain rate. In order to represent the strain rate and temperature dependent behavior of the flow stress at the intermediate strain rates accurately, an empirical hardening equation is suggested by modifying the well-known Khan-Huang-Liang model. The temperature and strain rate dependent sensitivity of the flow stress at the intermediate strain rate is considered in the hardening equation by coupling the strain, the strain rate and the temperature. The hardening equation suggested gives good correlation with experimental results at various intermediate strain rates and temperatures. In order to verify the effectiveness and accuracy of the suggested model quantitatively, the standard deviation of the fitted result from the experimental one is compared with those of the other two well-known empirical constitutive models such as the Johnson-Cook and the Khan-Huang-Liang models. The comparison demonstrates that the suggested model gives relatively well description of experimental results at various strain rates and temperatures.

A Study on the Strain Rate and Temperature Dependence of Yield Stress of Al-Li Alloy (Al-Li합금의 항복응력에 대한 변형속도 및 온도의존성에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.311-317
    • /
    • 2011
  • The effect of strain rate on the yield stress of an Al-Li alloy has been investigated at temperatures between 77 and 523 K and over the strain rate range from $1.77{\times}10^{-4}s^{-1}$ to $1.77{\times}10^{-2}s^{-1}$. At testing temperatures below 373 K, the yield stress is almost independent of strain rate at any aging stage. At testing temperatures above 373 K, the yield stress increases linearly with the logarithm of strain rate, and the strain rate dependence increases with increasing testing temperature. The yield stresses of under-aged alloy at temperatures between 373 and 473 K at high strain rates are greater than the yield stress at 77 K. For the alloy under-aged or aged nearly to its peak strength, the temperature range within which the positive temperature dependence of yield stress appears expands to the higher temperature side with increasing strain rate. The strain rate dependence of the yield stress is slightly negative at this aging stage. The yield stress of the over-aged alloy decreases monotonically with decreasing strain rate and with increasing testing temperature above 373 K. The modulus normalized yield stress is nearly constant at testing temperatures below 373 K at any strain rate investigated. And, strength depends largely both on the aging conditions and on the testing temperature. The peak positions in strength vs. aging time curves shift to the side of shorter aging time with increasing testing temperature. For the specimens aged nearly to the peak strength, the positive temperature dependence of yield stress is observed in the temperature range. The shift of peak positions in the aging curves are explained in terms of the positive temperature dependence of cutting stress and the negative temperature dependence of by-passing stress.

Pore Water Pressure Behavior due to Undrained Creep of Saturated Clay (포화점성토의 비배수 CREEP 성질에 의한 공극수압의 거동)

  • 강우묵;조성섭;지인택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.38-50
    • /
    • 1988
  • carried out to present a rheology model which is able to treat time-dependent properties of clay. The results were summarized as follow ; 1. The slope (a(e1)) of deviator stress in strain rate test was independent on axial strain, and pore water pressure was decreased with increment of strain rate. 2. The pore water pressure in a stress relaxation condition was not changed when the strain rate before stress relaxation was 0.05%/min., but it was increased with increment of time when the strain rate before stress relaxation was 0.2%/min 3. The greater the stress condition (q/qmax) and the strain rate before creep test became, the greater the increment rate of axial strain in creep test became. 4. SEKIGUCHI's constitutive equation was slightly overpredicted while empirical equation proposed in the study was well coincided with measured values. 5. The constitutive equation induced by a strain function could be dealed with a behavior of the pore water pressure increased with increment of elapsed time after primary consolidation.

  • PDF