• Title/Summary/Keyword: strain-hardening cement-based composites

Search Result 17, Processing Time 0.021 seconds

Influence of Strain-Hardening Cement Composite's Tensile Properties on the Seismic Performance of Infill Walls (변형경화형 시멘트 복합체의 인장성능에 따른 끼움벽의 내진성능)

  • Cha, Jun-Ho;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.3-14
    • /
    • 2012
  • This paper describes experimental results on the seismic performance of SHCC (strain-hardening cement composite) infill wall for improving damage tolerance capacity of non-ductile frame. To investigate the effect of tensile strain capacity and cracking behavior of SHCC materials on the shear behavior of SHCC infill wall, three infill walls were fabricated and tested under cyclic loading. The test parameter in this study is a type of cement composites; concrete and SHCCs. The two types of SHCC materials were prepared for infill walls. In order to induce crack damages into the mid-span of the infill wall, each infill wall had two 100-mm-deep-notches on both sides. Test results indicated that SHCC infill walls showed superior crack control capacities and much larger drift ratios at the peak loads than RC (reinforced concrete) infill wall, as expected. In particular, due to the bridging actions of the reinforcing fibers, SHCC matrix used in this study would delay the stiffness degradation of infill wall after the first inclined cracking. Moreover, from the damage classes based on the cracks' maximum width in the infill walls, it was observed that PIW-SHD specimen possessed nearly threefold seismic capacities compared to PIW-SLD specimen. Also, from the results on the strain of diagonal reinforcements, it can be concluded that the SHCC matrix would resist a part of tensile stresses transferred along steel rebar in the infill wall.

Development of Sprayable Strain-Hardening Cement Composite(SHCC) for Joint between Existing R/C Building and Seismic Retrofit Elements (기존 철근콘크리트 건물과 내진보강요소의 접합부 충진을 위한 뿜칠형 섬유보강 시멘트 복합체(SHCC)의 개발)

  • Kim, Sung-Ho;Youn, Gil-Ho;Kim, Yong-Cheol;Kim, Jae-Hwan;Yun, Hyun-Do
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.19 no.5
    • /
    • pp.29-36
    • /
    • 2012
  • The goals of this study are to develop a sprayable strain-hardening cement composite (SHCC) and to investigate the potential of the sprayable SHCC for packing the joint between existing R/C building and seismic retrofit elements. This paper provides the procedure for the development of a sprayable SHCC, test results of fresh properties required to a sprayable SHCC, and mock-up test results of developed sprayable SHCC. Control mixture of polyvinyl alcohol (PVA) fiber-reinforced SHCC (PVA-SHCC) was predetermined based on available research results. The pumpability and sprayability of the SHCC mixture were depended on the fluid property of fresh SHCC mixture. In this study, the effects of admixtures such as AE agent and fly ash on the rheological and rebound properties of control SHCC mixture were investigated to determine a sprayable SHCC mixture. Flow values and air content during shotcreting procedure of sprayable SHCC were also evaluated. The results show that flow or flowability and amount of air of three SHCC mixtures decreased almost linearly according to shotcreting procedure from mixer to nozzle. And the pumpability and sprayability of mixture with AE agent and low amounts of fly ash were superior to the those of SHCC. Mock-up test result show that developed sprayable SHCC indicates much improved workability and shotcrete construction period than conventional method(nonshrinkage mortar).

Mechanical Properties of Strain Hardening Cement-Based Composite (SHCC) with Recycled Materials (자원순환형 재료를 사용한 변형경화형 시멘트 복합체(SHCC)의 역학적 특성)

  • Kim, Sun-Woo;Cha, Jun-Ho;Kim, Yun-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.727-736
    • /
    • 2010
  • This paper describes results of an preliminary study to produce strain hardening cement-based composites (SHCCs)with consideration of sustainability for infrastructure applications. The aims of this study are to evaluate the influence of recycled materials on the mechanical characteristics of SHCCs, such as compressive, four-point bending, and direct tensile behaviors, and to give basic data for constitutive model for analyzing and designing infra structures with SHCCs. In this study, silica sand, cement, and PVA fibers, were partially replaced with recycled sand, fly-ash, and FET fibers in the mixture of SHCCs, respectively. Test results indicated that fly-ash could improve both bending and direct tensile performance of SHCCs due to increasing chemical bond strength at the interface between PVA fibers and cement matrices. However, SHCCs replaced with PET fibers showed much lower performance in bending and direct tensile tests due to originally low mechanical properties of own fibers, although compressive behavior is similar to PVA2.0 specimen. Also, it was noted that the recycled sand would increase elastic modulus of SHCCs due to larger grain size compared to silica sand. Based on pre-set target value to maintain the performance of SHCCs, it was concluded that the replacement ratio below 20% of fly-ash or below 50% of recycled sands would be desirable for creating sustainable SHCCs.

Design and Constructibility of an Engineered Cementitious Composite Produced with Cement-based Mortar Matrix and Synthetic Fibers (시멘트계 모르타르 매트릭스를 활용한 섬유복합재료 ECC(Engineered Cementitious Composite)의 설계와 시공 성능)

  • Kim, Yun-Yong
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 2007
  • This paper summarizes the design procedure and constructibility of an ECC (Engineered Cementitious Composite), which is a synthetic fiber-reinforced composite produced with the Portland cement-based mortar matrix. This study employs a stepwise method to develop useful ECC in construction field, which possesses different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). To control the rheological properties of the composite, the aggregates and reinforcing fibers were initially selected based on micromechanical analysis and steady-state cracking theory. The stability and consequent viscosity of the suspensions were then mediated by optimizing the dosage of the chemical and mineral admixtures. The rheological properties altered through this approach were revealed to be effective in obtaining ECC-hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh ECC.

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

Rheology Control of Cement Paste for Applying ECC Produced with Slag Particles to Self-Consolidating and Shotcreting Process (고로슬래그 미분말이 혼입된 자기충전 및 숏크리트용 ECC의 개발을 위한 시멘트풀 레올로지 제어)

  • Park, Seung-Bum;Kim, Jeong-Su;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • An engineered cementitious composite produced with slag particles (Slag-ECC) had been developed based on micromechanical principle. Base grain ingredients were properly selected, and then the mixture proportion was optimized to be capable of achieving robust tensile ductility in the hardened state. The rheological design is performed in the present study by optimizing the amount of admixtures suitable for self-consolidating casting and shotcreting process in the fresh state. A special focus is placed on the rheological control which is directly applicable to the construction in field, using prepackaged product with all pulverized ingredients. To control the rheological properties of the composite, which possesses different fluid properties to facilitate two types of processing (i.e., self-consolidating and shotcreting processing), the viscosity change of the cement paste suspensions over time was initially investigated, and then the proper dosage of the admixtures in the cement paste was selected. The two types of mixture proportion were then optimized by self-consolidating & shotcreting tests. A series of self-consolidating and shotcreting tests demonstrated excellent self-consolidation property and sprayability of the Slag-ECC. The rheological properties altered through this approach were revealed to be effective in obtaining Slag-ECC hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh Slag-ECC. These ductile composites with self-consolidating and shotcreting processing can be broadly utilized for a variety of applications, e.g., in strengthening seismic resistant structures with congested reinforcements, or in repairing deteriorated infrastructures by shotcreting process.

Compressive Strength and Chloride Ion Penetration Resistance of SHCC Coated by PDMS-based Penetrating Water Repellency (PDMS 흡수방지재를 적용한 SHCC의 압축강도 및 염화물이온 침투저항성)

  • Lee, Jun-Hee;Hyun, Jung-Hwan;Park, Su-Hyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.16-23
    • /
    • 2018
  • In this study, Polydimethylsiloxane (PDMS) was applied to Strain Hardening Cement Composites (SHCC) for penetrating water repellency. The penetration depth of PDMS, strength of SHCC, and chloride ion penetration resistance of SHCC were investigated. As a result of measuring penetration depth of PDMS when applying different application method, it was confirmed that all methods satisfied the requirements of KS F 4930. Although the immersion method showed the largest penetration depth, the spray method was considered to be more appropriate considering the ease of field application. Compressive strength tests showed that the penetration depth of PDMS decreased as the compressive strength of SHCC increased. The compressive strength of M4-A and M4-B specimens with large PDMS penetration depths decreased by 9.6% and 8.0%, respectively, compared with those of M4 specimens produced without PDMS. Compressive strengths of the M1-A and M1-B specimens with small PDMS penetration depths were reduced by 4% and 2.2%, respectively, compared with the M1 specimen. As a result, it can be seen that the strength reduction rate of SHCC increases as the penetration depth of PDMS increases. The chlorine ion penetration tests showed that the chlorine ion penetration resistance increases with the penetration depth of PDMS.