• Title/Summary/Keyword: strain-dependency

Search Result 124, Processing Time 0.022 seconds

Rheological Models for Simulations of Concrete Under High-Speed Load (콘크리트 재료의 동적 물성 변화를 모사하기 위한 유변학적(Rheological)모델 개발 및 평가)

  • Hwang, Young Kwang;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.769-777
    • /
    • 2015
  • In this study, the rheological models were introduced and developed to reflect rate dependent tensile behaviour of concrete. In general, mechanical properties(e.g. strength, elasticity, and fracture energy) of concrete are increased under high loading rates. The strength of concrete shows high rate dependency among its mechanical properties, and the tensile strength has higher rate dependency than the compressional strength. To simulate the rate dependency of concrete, original spring set of RBSN(Rigid-Body- Spring-Network) model was adjusted with viscous and friction units(e.g. dashpot and Coulomb friction component). Three types of models( 1) visco-elastic, 2) visco-plastic, and 3) visco-elasto- plastic damage models) are considered, and the constitutive relationships for the models are derived. For validation purpose, direct tensile test were simulated, and characteristics of the three different rheological models were compared with experimental stress-strain responses. Simulation result of the developed visco-elasto-plastic damage(VEPD) model demonstrated well describing and fitting with experimental results.

Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers

  • Lee, J.R.;Park, C.Y.;Kong, C.W.
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.185-197
    • /
    • 2013
  • We developed a simultaneous strain measurement and damage detection technique using a pair of surface-mounted piezoelectric transducers and a fiber connecting them. This is a novel sensor configuration of the fiber acoustic wave (FAW) piezoelectric transducer. In this study, lead-zirconate-titanate (PZT) transducers are installed conventionally on a plate's surface, which is a technique used in many structural health monitoring studies. However, our PZTs are also connected with an optical fiber. A FAW and Lamb wave are simultaneously guided in the optical fiber and the structure, respectively. The dependency of the time-of-flight of the FAW on the applied strain is quantified for strain sensing. In our experimental results, the FAW exhibited excellent linear behavior and no hysteresis with respect to the change in strain. On the other hand, the well-known damage detection function of the surface-mounted PZT transducers was still available by monitoring the waveform change in the conventional Lamb wave ultrasonic path.

A softening hyperelastic model and simulation of the failure of granular materials

  • Chang, Jiangfang;Chu, Xihua;Xu, Yuanjie
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.335-353
    • /
    • 2014
  • The softening hyperelastic model based on the strain energy limitation is of clear concepts and simple forms to describe the failure of materials. In this study, a linear and a nonlinear softening hyperelastic model are proposed to characterize the deformation and the failure in granular materials by introducing a softening function into the shear part of the strain energy. A method to determine material parameters introduced in the models is suggested. Based on the proposed models the numerical examples focus on bearing capacity and strain localization of granular materials. Compared with Volokh softening hyperelasticity and classical Mohr-Coulomb plasticity, our proposed models are able to capture the typical characters of granular materials such as the strain softening and the critical state. In addition, the issue of mesh dependency of the proposed models is investigated.

Stress Profile Dependence of the Optical Properties in Strained Quantum Wire Arrays

  • Yi, Jong-Chang;Ji, Jeong-Beom
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 2003
  • The effects of strain distribution in quantum wire arrays have been analyzed using a finite-element method including both the hydrostatic and shear strain components. Their effects on the optical properties of the quantum wire arrays are assessed for various types of stress profiles by calculating the optical gain and the polarization dependence. The results show unique polarization dependency, which can be exploited either for the single polarization or the polarization-independent operation in quantum wire photonic devices.

Study for Local Glass Transition of Bulk Metallic Glasses using Atomic Strain (원자변형률을 이용한 비정질 금속의 천이온도에 관한 연구)

  • Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.104-109
    • /
    • 2011
  • Bulk metallic glasses (BMG) have been greatly improved by the advance of synthesis process during last three decades. It was also found that the Glass Forming Ability (GFA) strongly depends on the glass transition temperature. When the temperature approaches to a critical value, the crystals nucleation from the supercooled liquid can be suppressed so that bulk glass formation possible. Egami and others found that the local glass transition temperature depends on the volumetric strain of each atom and suggested the critical transition temperature. In this paper, we explore the strain dependency of local glass transition temperature using the atomic strain defined by the deformation tensor for the Voronoi polyhedra.

Modelling of strain localization in a large strain context

  • Cescotto, S.;Li, X.K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.645-653
    • /
    • 1996
  • In order to avoid pathological mesh dependency in finite element modelling of strain localization, an isotropic elasto-plastic model with a yield function depending on the Laplacian of the equivalent plastic strain is implemented in a 4-node quadrilateral finite element with one integration point based on a mixed formulation derived from Hu-Washizu principle. The evaluation of the Laplacian is based on a least square polynomial approximation of the equivalent plastic strain around each integration point. This non local approach allows to satisfy exactly the consistency condition at each integration point. Some examples are treated to illustrate the effectiveness of the method.

Molecular Dynamics Simulation for Compression Test of PMMA Nano Pillars (PMMA 나노 기둥의 압축시험에 대한 분자동역학 해석)

  • Kim, Jung-Yup;Kim, Jae-Hyun;Choi, Byung-Ik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.502-505
    • /
    • 2007
  • PMMA has been extensively adopted in Nano Imprint Lithography(NIL). PMMA nano-structures experience severe mechanical load and deformation during NIL process, and understanding its mechanical behavior is very important in designing and optimizing NIL process. One of the most promising techniques for characterizing the mechanical behavior of nano structures is nano pillar compression test. In this study, the mechanical behaviors of PMMA pillars during compression test are analyzed using Molecular Dynamics. Two methods for simulation of PMMA nano pillars are proposed. The stress-strain relationship of nano-scale PMMA structure is obtained based on CVFF(Covalent Valence Force Fields) potential and the dependency of the applied strain rate on the stress-strain relationship is analyzed. The obtained stress-strain relationships can be useful in simulating nano-scale PMMA structures using Finite Element Method(FEM) and understanding the experimental results obtained by compression test of PMMA nano pillars.

  • PDF

Analysis of material dependency in an elastic - plastic contact models using contact mechanics approach

  • Gandhi, V.C. Sathish;Kumaravelan, R.;Ramesh, S.;Sriram, K.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.1051-1066
    • /
    • 2015
  • The study aims on the effect of material dependency in elastic- plastic contact models by contact analysis of sphere and flat contact model and wheel rail contact model by considering the material properties without friction. The various materials are selected for the analysis based on Young's modulus and yield strength ratio (E/Y). The simulation software 'ANSYS' is employed for this study. The sphere and flat contact model is considered as a flattening model, the stress and strain for different materials are estimated. The simulation of wheel-rail contact model is also performed and the results are compared with the flattening model. The comparative study has also been extended for finding out the mean contact pressure for different materials the E/Y values between 150 and 660. The results show that the elastic-plastic contact analysis for materials up to E/Y=296.6 is depend on the nature of material properties and also for this material the mean contact pressure to yield strength reaches 2.65.

A 1D model considering the combined effect of strain-rate and temperature for soft soil

  • Zhu, Qi-Yin;Jin, Yin-Fu;Shang, Xiang-Yu;Chen, Tuo
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • Strain-rate and temperature have significant effects on the one-dimensional (1D) compression behavior of soils. This paper focuses on the bonding degradation effect of soil structure on the time and temperature dependent behavior of soft structured clay. The strain-rate and temperature dependency of preconsolidation pressure are investigated in double logarithm plane and a thermal viscoplastic model considering the combined effect of strain-rate and temperature is developed to describe the mechanical behavior of unstructured clay. By incorporating the bonding degradation, the model is extended that can be suitable for structured clay. The extended model is used to simulate CRS (Constant Rate of Strain) tests conducted on structural Berthierville clay with different strain-rates and temperatures. The comparisons between predicted and experimental results show that the extended model can reasonably describe the effect of bonding degradation on the stain-rate and temperature dependent behavior of soft structural clay under 1D condition. Although the model is proposed for 1D analysis, it can be a good base for developing a more general 3D model.

Evolution of post-peak localized strain field of steel under quasi-static uniaxial tension: Analytical study

  • Altai, Saif L.;Orton, Sarah L.;Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.435-449
    • /
    • 2022
  • Constitutive modeling that could reasonably predict and effectively evaluate the post-peak structural behavior while eliminating the mesh-dependency in numerical simulation remains to be developed for general engineering applications. Based on the previous work, a simple one-dimensional modeling procedure is proposed to predict and evaluate the post-peak response, as characterized by the evolution of localized strain field, of a steel member to monotonically uniaxial tension. The proposed model extends the classic one-dimensional softening with localization model as introduced by (Schreyer and Chen 1986) to account for the localization length, and bifurcation and rupture points. The new findings of this research are as follows. Two types of strain-softening functions (bilinear and nonlinear) are proposed for comparison. The new failure criterion corresponding to the constitutive modeling is formulated based on the engineering strain inside the localization zone at rupture. Furthermore, a new mathematical expression is developed, based on the strain rate inside and outside the localization zone, to describe the displacement field at which bifurcation occurs. The model solutions are compared with the experimental data on four low-carbon cylindrical steel bars of different lengths. For engineering applications, the model solutions are also compared to the experimental data of a cylindrical steel bar system (three steel bars arranged in series). It is shown that the bilinear and nonlinear softening models can predict the energy dissipation in the post-peak regime with an average difference of only 4%.