• Title/Summary/Keyword: strain path

Search Result 240, Processing Time 0.032 seconds

Fracture Mechanics Analysis of a Interface Crack in the Weld of Dissimilar Steels using the J-integral (J-적분을 이용한 이종강재 용접접합부 계면균열의 파괴역학적 해석)

  • Lee Chin-Hyung;Chang Kyong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.423-431
    • /
    • 2004
  • For the fracture mechanics analysis of cracks in welds of dissimilar steels, residual stress analysis and fracture analysis must be performed simultaneously. The standard definition of the J -integral leads to a path dependent value in the presence of a residual stress field. And unlike cracks in homogeneous materials, a bimaterial interface crack always induces both opening and shearing modes of stress in the vicinity of the crack tip. Therefore, it is necessary to develope a path independent J-integral definition for a crack in a residual stress field generated by welding of dissimilar steels. This paper addresses the modification of the Rice-J-integral to produce a path independent J -integral when residual stresses due to welding of dissimilar steels and external forces are present. The residual stress problem is treated as an initial strain problem and the J-integral proposed for this class of problems is used. And a program which can evaluate the J -integral for a crack in a weld of dissimialr steels is developed using proposed J integral definition.

Family Resiliency Facto for the Adaptation of Family who have a Congenital Heart Disease (선천성 심장 질환 아동 가족의 복원 요인이 적응에 미치는 영향)

  • Tak Young-Ran;Yun E-Hwa;An Ji-Yeon;Kim Sang-Hwa
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.7
    • /
    • pp.1298-1306
    • /
    • 2004
  • Purpose: The purpose of this study was to explore the relationships of family strain, perceived social support, family hardiness, and family adaptation and identify the family resiliency factors for the adaptation of families who have a child with congenital heart disease. Method: The sample consisted of 90 families who had a child diagnosed with congenital heart disease and completed surgical treatment. Data was collected from parents using a questionnaire. Results: Results from path analyses revealed that family strain had a direct effect on both perceived social support and family hardiness, and an indirect effect on family adaptation. Also, the findings revealed that perceived social support had a direct effect on both family hardiness and family adaptation, and family hardiness had a direct effect on family adaptation. Thus, these results indicated that perceived social support and family hardiness had a mediating effect on family strain. Conclusion: Findings provide the evidence for the theoretical and empirical significance of perceived social support and family hardiness as family resiliency factors for family adaptation. Clinical implications of these findings might be discussed in terms of family-centered nursing interventions for the families who have a child with congenital heart disease based on an understanding of family resiliency for adaptation.

Influence of DIC Frame Rate on Experimental Determination of Instability and Fracture Points for DP980 Sheets under Various Loading Conditions (다양한 하중 조건에서 DP980 판재의 불안정성 및 파단점 결정시 DIC Frame Rate의 영향)

  • Noh, E.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.368-374
    • /
    • 2019
  • The past recent years have seen an increasing use of high-strength steel sheets in the automotive industry. However, the formability and damage prediction of these materials requires accurate acquisition of necking and fracture strains. Digital image correlation (DIC) is used to accurately capture the necking and fracture strains during testing. The fact that single time points of capturing vary with frame rate makes the need for an investigation necessary. For the high-strength steel DP980, the frame-rate dependences of the final necking and fracture strains values are analyzed here. To eliminate the influence of gauge length, the strains were measured locally by DIC. Results for three specimen shapes obtained with frame rates of 1 and 900 fps (frames per second) were considered and based on them, triaxiality failure diagrams (TFD) are established. It was observed that after diffuse necking, the deformation path departed from the initially linear one, and the stress triaxiality grew with ongoing deformation. It was further revealed that the frame rate-dependence of the necking strain was rather low (< 2%), whereas the fracture strain could be underestimated by up to 8% when the lower frame rate of 1 fps was used (compared with 900 fps). In this study, this issue is investigated while taking into consideration the three different triaxialities. These results demonstrate the importance of choosing an appropriate frame rate for the determination of necking and fracture strains in particular.

A Nonlinear Constitutive Model for Progressive Fracturing of Concrete (콘크리트의 점진적(漸進的) 파괴(破壞)에 대한 비선형(非線型) 구성(構成)모델확립연구(硏究))

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.55-64
    • /
    • 1984
  • Presented is a nonlinear constitutive model for progressive tensile fracturing of concrete. The model is incremental, path-dependent, and tensorialy invariant. The total strain tensor is assumed to be a sum of a purely elastic component and an inelastic component. The material is considered to contain weak planes of all directions which characterize the planes of the microcracks. A one-to-one functional dependence is assumed between the normal stress and the normal strain across each of the weak planes. The tangential stiffness of concrete is then derived form the principle of virtual work. The present theory can be applied to loading histories which are nonproportional or during which the principal directions rotate. Good agreement with the available direct tensile test data which cover strain-softening is demonstrated.

  • PDF

Structure and NO formation characteristics of oxidizer-controlled diffusion flames (산화제 제어 화염의 구조 및 NO 생성 특성)

  • Han, Ji-Woong;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.185-190
    • /
    • 2001
  • Numerical Study with detailed chemistry has been conducted to investigate the flame structure and NOx formation characteristics in oxygen-enhanced$(CH_4/O_2-N_2)$ and oxygen-enhanced-EGR$(CH_4/O_2-CO_2)$ counter diffusion flame with various strain rates. A small amount of $N_2$ is included in oxygen-enhanced-EGR combustion, in order to consider the inevitable $N_2$ contamination by $O_2$ production process or air infiltration. The results are as follows : In $CH_4/O_2-CO_2$ flame it is very important to adopt a radiation effect precisely because the effect of radiation changes flame structure significantly. In $CH_4/O_2-N_2$ flame special strategy to minimize NO emission is needed because it is very sensitive to a small amount of $N_2$. Special attention is needed on CO emission by flame quenching, because of increased CO concentration. Spatial NO production rate of oxygen-enhanced combustion is different from that of air and oxygen-enhanced-EGR combustion in that thermal mechanism plays a role of destruction as well as production. In case $CH_4/O_2-CO_2$ flame contains more than 40% $CO_2$ it is possible to maintain the same EINO as that of $CH_4/Air$ flame with accomplishing higher temperature than that of $CH_4/Air$ flame. EINO decreases with increasing strain rate, and those effects are augmented in $CH_4/O_2$ flame. Complementary study is needed with extending the range of strain rate variation.

  • PDF

A Basic Study on Torsion Shear Tests in Soils (흙의 비틀림전단시험에 관한 기초적 연구)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-28
    • /
    • 1988
  • Among several types of element tests to predict soil behalf.iota in a laboratory, the torsion shear apparatus, in which the directions of principal stresses could be rotated during shearing, wra explained. In this study, this torsion shear apparatus was improved so as to be used in tests on clay specimens . And some undrained torsion shear tests u.ere performed on remolded specimens of Ko-consolidated clay to investigate the influence of reorientation of the principal stress directions on the stress-strain behavior The soil behavior by the torsion shear apparatus without torque was compared It.ith that by the conventional triaxial compression tests . The stress path, provided by both vertical loads and torque during torsion shear tests, has much effect on the stress-strain behavior, the pore pressure and the effective principal stress ratio . The rotation angle of the principal stress and the b-value were gradually increased with increasing shear strain, but converged to the values at failure.

  • PDF

Evaluation of Static Structural Integrity for Composites Wing Structure by Acoustic Emission Technique (음향방출법을 응용한 복합재 날개 구조물의 정적구조 건전성 평가)

  • Jun, Joon-Tak;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.780-788
    • /
    • 2009
  • AE technique was applied to the static structural test of the composite wing structure to evaluate the structural integrity and damage. During the test, strain and displacements measurement technique were used to figure out for static structural strength. AE parameter analysis and source location technique were used to evaluate the internal damage and find out damage source location. Design limit load test, the 1st and 2nd design ultimate load tests and fracture test were performed. Main AE source was detected by an sensor attached on skin near by front lug. Especially, at the 1st design ultimate test, strain and displacements results didn't show internal damage but AE signal presented a phenomenon that the internal damage was formed. At the fracture test, AE activities were very lively, and strain and displacements results showed a tendency that the load path was changed by severe damage. The internal damage initiation load and location were accurately evaluated during the static structural test using AE technique. It is certified from this paper that AE technique is useful technique for evaluation of internal damage at static structural strength test.

Isolation and Characterization of a Rhodococcus Species Strain Able to Grow on ortho- and para-Xylene

  • Jang Jung Yeon;Kim Dockyu;Bae Hyun Won;Choi Ki Young;Chae Jong-Chan;Zylstra Gerben J.;Kim Young Min;Kim Eungbin
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.325-330
    • /
    • 2005
  • Rhodococcus sp. strain YU6 was isolated from soil for the ability to grow on o-xylene as the sole carbon and energy source. Unlike most other o-xylene-degrading bacteria, YU6 is able to grow on p-xylene. Numerous growth substrate range experiments, in addition to the ring-cleavage enzyme assay data, suggest that YU6 initially metabolizes 0- and p-xylene by direct aromatic ring oxidation. This leads to the formation of dimethylcatechols, which was further degraded largely through meta-cleavage path-way. The gene encoding meta-cleavage dioxygenase enzyme was PCR cloned from genomic YU6 DNA using previously known gene sequence data from the o-xylene-degrading Rhodococcus sp. strain DK17. Subsequent sequencing of the 918-bp PCR product revealed a $98\%$ identity to the gene, encoding meth-ylcatechol 2,3-dioxygenase from DK17. PFGE analysis followed by Southern hybridization with the catechol 2,3-dioxygenase gene demonstrated that the gene is located on an approximately 560-kb megaplasmid, designated pJY J1

A Critical Liquefaction Resistible Characteristic of Saturated Sands Based on the Cyclic Triaxial Test Under Sinusoidal Loadings (정현하중재하 진동삼축시험에 기초한 포화사질토의 액상화 한계저항특성)

  • 최재순;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.147-158
    • /
    • 2004
  • Laboratory dynamic tests are carried out to assess the liquefaction potential of saturated sands in most countries. However, simple results such as the maximum cyclic shear stress and the number of cycles at initial liquefaction are used in the experimental assessment of liquefaction potential, even though various results can be obtained from the dynamic test. In addition, it seemed to be inefficient because more than three dynamic tests with different stress ratio have to be carried out to draw a liquefaction resistance experimental curve. To improve the present assessment method fur liquefaction potential, a new critical resistible characteristic far soil liquefaction is proposed and verified through conventional cyclic triaxial tests with Jumunjin sand. In the proposed method, various experimental data such as effective stress path, stress-strain relationship, and the change of excess pore water pressure can be used in the determination of cumulative plastic shear strains at every 1/4 cycle. Especially, the critical cumulative plastic shear strain to initiate liquefaction can be defined in a specific point called a phase change point in the effective stress path and it can be calculated from a hysteric curve of stress-strain relationship up to this point. Through this research, it is found that the proposed cumulative plastic shear strain can express the dissipated energy to resist dynamic loads and consider the realistic soil dynamic behavior of saturated sands reasonably. It is also found that the critical plastic shear strain can be used as a registible index of soils to represent the critical soil dynamic state, because it seems to include no effect of large deformation.

Simulation of Texture Evolution in DP steels during Deep Drawing Process (DP강의 디프드로잉 시 집합조직 발달 시뮬레이션)

  • Song, Y.S.;Han, S.H.;Chin, K.G.;Choi, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.130-133
    • /
    • 2008
  • The formability of DP steels can be affected by not only initial texture but also deformation texture evolved during plastic deformation. To investigate the evolution of deformation texture during deep drawing, deep drawing process for DP steels was carried out experimentally. A rate sensitive polycrystal model was used to predict texture evolution during deep drawing process. In order to evaluate the strain path during deep drawing, a steady state was assumed in the flange part of deep drawn cup. A rate sensitive polycrystal model successfully predicted the texture development in DP steels during deep drawing process. It was found that the final stable orientations were strongly dependent on the initial location in the blank.

  • PDF