• Title/Summary/Keyword: strain of reinforcement

검색결과 614건 처리시간 0.026초

영상 분석 기법을 이용한 RC 부재의 항복 후 휨 거동 분석(II): 인장부를 중심으로 (Evaluation on the Bending Behavior After Yield of RC Beam by Using Image Processing Method(II): Focused on the Tensile Part)

  • 김건수;박기태;우태련
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권6호
    • /
    • pp.47-53
    • /
    • 2022
  • 콘크리트구조물의 한계상태설계법이 적용되면서 구조물의 극한상태까지 고려하는 설계가 이루어지고 있다. 실제 철근콘크리트 부재가 인장력을 부담할 때 부재가 항복한 후에도 극한상태까지 콘크리트가 인장력을 부담한다. 따라서 한계상태 거동에 대한 정확한 평가를 위해서는 휨 부재의 항복 후 인장강화효과에 대한 연구가 필요하다. 본 연구에서는 복철근 직사각형 단면을 가지는 RC 단순보에 대하여 4점 휨 실험을 수행하였고, 영상분석기법을 이용하여 부재의 거동을 상세하게 분석하였다. 분석 결과를 이용하여 휨 인장강화효과 계수를 도입한 항복 후 인장강화효과 추정식을 제안하였고, 이를 기존 연구들의 실험 결과를 통해 적용성을 검증하였다. 부재의 연성거동을 대표하는 극한 변형률과 항복 변형률 차이가 실험 결과와 유사하게 나타나 제안식의 예측이 비교적 정확한 것으로 판단된다.

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

Static analysis of nonlinear FG-CNT reinforced nano-composite beam resting on Winkler/Pasternak foundation

  • Mostefa Sekkak;Rachid Zerrouki;Mohamed Zidour;Abdelouahed Tounsi;Mohamed Bourada;Mahmoud M Selim;Hosam A. Saad
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.509-519
    • /
    • 2024
  • In this study, the static analysis of carbon nanotube-reinforced composites (CNTRC) beams resting on a Winkler-Pasternak elastic foundation is presented. The developed theories account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. To study the effect of carbon nanotubes distribution in functionally graded (FG-CNT), we introduce in the equation of CNT volume fraction a new exponent equation. The SWCNTs are assumed to be aligned and distributed in the polymeric matrix with different patterns of reinforcement. The rule of mixture is used to describe the material properties of the CNTRC beams. The governing equations were derived by employing Hamilton's principle. The models presented in this work are numerically provided to verify the accuracy of the present theory. The analytical solutions are presented, and the obtained results are compared with the existing solutions to verify the validity of the developed theories. Many parameters are investigated, such as the Pasternak shear modulus parameter, the Winkler modulus parameter, the volume fraction, and the order of the exponent in the volume fraction equation. New results obtained from bending and stresses are presented and discussed in detail. From the obtained results, it became clear the influence of the exponential CNTs distribution and Winkler-Pasternak model improved the mechanical properties of the CNTRC beams.

A framework for modelling mechanical behavior of surrounding rocks of underground openings under seismic load

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Pei, Qitao;Wu, Yongjin
    • Earthquakes and Structures
    • /
    • 제13권6호
    • /
    • pp.519-529
    • /
    • 2017
  • The surrounding rocks of underground openings are natural materials and their mechanical behavior under seismic load is different from traditional man-made materials. This paper proposes a framework to comprehensively model the mechanical behavior of surrounding rocks. Firstly, the effects of seismic load on the surrounding rocks are summarized. Three mechanical effects and the mechanism, including the strengthening effect, the degradation effect, and the relaxation effect, are detailed, respectively. Then, the framework for modelling the mechanical behavior of surrounding rocks are outlined. The strain-dependent characteristics of rocks under seismic load is considered to model the strengthening effect. The damage concept under cyclic load is introduced to model the degradation effect. The quantitative relationship between the damage coefficient and the relaxation zone is established to model the relaxation effect. The major effects caused by seismic load, in this way, are all considered in the proposed framework. Afterwards, an independently developed 3D dynamic FEM analysis code is adopted to include the algorithms and models of the framework. Finally, the proposed framework is illustrated with its application to an underground opening subjected to earthquake impact. The calculation results and post-earthquake survey conclusions are seen to agree well, indicating the effectiveness of the proposed framework. Based on the numerical calculation results, post-earthquake reinforcement measures are suggested.

Behavior of self-compacting recycled concrete filled aluminum tubular columns under concentric compressive load

  • Yasin Onuralp Ozkilic;Emrah Madenci;Walid Mansour;I.A. Sharaky;Sabry Fayed
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.243-260
    • /
    • 2024
  • Thirteen self-compacting recycled concrete filled aluminium tubular (SCRCFAT) columns were tested under concentric compression loads. The effects of the replacement ratio of the recycled concrete aggregate (RCA) and steel fibre (SF) reinforcement on the structural performance of the SCRCFAT columns were studied. A control specimen (C000) was cast with normal concrete without SF to be reference for comparison. Twelve columns were cast using RCA, six columns were cast using concrete incorporating 2% SF while the rest of columns were cast without SF. Failure mode, ductility, ultimate load capacity, axial deformation, ultimate strains, stress-strain response, and stiffness of the SCRCFAT columns were studied. The results showed that, the peak load of tested SCRCFAT columns incorporating 5-100 % RCA without SF reduced by 2.33-11.28 % compared to that of C000. Conversely, the peak load of tested SCRCFAT columns incorporating 5-100% RCA in addition to 2% SF increased by 21.1-40.25%, compared to C000. Consequently, the ultimate axial deformation (Δ) of column C100 (RCA=100% and SF 0%) increased by about 118.9 % compared to C000. The addition of 2% SF to the concrete mix decreased the axial deformation of SCRCFAT columns compared to those cast with 0% SF. Moreover, the stiffness of the columns cast without SF decreased as the RCA % increased. In contrast, the columns stiffness cast with 2% SF increased by 26.28-89.7 % over that of C000. Finally, a theoretical model was proposed to predict the ultimate loads tested SCRCFAT columns and the obtained theoretical results agreed well with the experimental results.

Applicability of Cu-Al-Mn shape memory alloy bars to retrofitting of historical masonry constructions

  • Shrestha, Kshitij C.;Araki, Yoshikazu;Nagae, Takuya;Omori, Toshihiro;Sutou, Yuji;Kainuma, Ryosuke;Ishida, Kiyohito
    • Earthquakes and Structures
    • /
    • 제2권3호
    • /
    • pp.233-256
    • /
    • 2011
  • This paper investigates the applicability of newly developed Cu-Al-Mn shape memory alloy (SMA) bars to retrofitting of historical masonry constructions by performing quasi-static tests of half-scale brick walls subjected to cyclic out-of-plane flexure. Problems associated with conventional steel reinforcing bars lie in pinching, or degradation of stiffness and strength under cyclic loading, and in their inability to restrain residual deformations in structures during and after intense earthquakes. This paper attempts to resolve the problems by applying newly developed Cu-Al-Mn SMA bars, characterized by large recovery strain, low material cost, and high machinability, as partial replacements for steel bars. Three types of brick wall specimens, unreinforced, steel reinforced, and SMA reinforced specimens are prepared. The specimens are subjected to quasi-static cyclic loading up to rotation angle enough to cause yielding of reinforcing bars. Corresponding nonlinear finite element models are developed to simulate the experimental observations. It was found from the experimental and numerical results that both the steel reinforced and SMA reinforced specimens showed substantial increment in strength and ductility as compared to the unreinforced specimen. The steel reinforced specimen showed pinching and significant residual elongation in reinforcing bars while the SMA reinforced specimen did not. Both the experimental and numerical observations demonstrate the superiority of Cu-Al-Mn SMA bars to conventional steel reinforcing bars in retrofitting historical masonry constructions.

New emerging surface treatment of GFRP Hybrid bar for stronger durability of concrete structures

  • Park, Cheolwoo;Park, Younghwan;Kim, Seungwon;Ju, Minkwan
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.593-610
    • /
    • 2016
  • In this study, an innovative and smart glass fiber-reinforced polymer (GFRP) hybrid bar was developed for stronger durability of concrete structures. As comparing with the conventional GFRP bar, the smart GFRP Hybrid bar can promise to enhance the modulus of elasticity so that it makes the cracking reduced than the case when the conventional GFRP bar is used. Besides, the GFRP Hybrid bar can effectively resist the corrosion of conventional steel bar by the GFRP outer surface on the steel bar. In order to verify the bond performance of the GFRP hybrid bar for structural reinforcement, uniaxial pull-out test was conducted. The variables were the bar diameter and the number of strands and pitch of the fiber ribs. Tensile tests showed a excellent increase in the modulus of elasticity, 152.1 GPa, as compared to that of the pure GFRP bar (50 GPa). The stress-strain curve was bi-linear, so that the ductile performance could be obtained. For the bond test, the entire GFRP hybrid bar test specimens failed in concrete splitting due to higher shear strength resulting in concrete crushing as a function of bar deformation. Investigation revealed that an increase in the number of strands of fiber ribs enhanced the bond strength, and the pitch guaranteed the bond strength of 19.1 mm diameter hybrid bar with 15.9 mm diameter of core section of deformed steel the ACI 440 1R-15 equation is regarded as more suitable for predicting the bond strength of GFRP hybrid bars, whereas the CSA S806-12 prediction is considered too conservative and is largely influenced by the bar diameter. For further study, various geometrical and material properties such as concrete cover, cross-sectional ratio, and surface treatment should be considered.

Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites

  • Zaheer, Mohd Moonis;Jafri, Mohd Shamsuddin;Sharma, Ravi
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.207-215
    • /
    • 2019
  • Application of nanotechnology can be used to tailor made cementitious composites owing to small dimension and physical behaviour of resulting hydration products. Because of high aspect ratio and extremely high strength, carbon nanotubes (CNTs) are perfect reinforcing materials. Hence, there is a great prospect to use CNTs in developing new generation cementitious materials. In the present paper, a parametric study has been conducted on cementitious composites reinforced by two types of multi walled carbon nanotubes (MWCNTs) designated as Type I CNT (10-20 nm outer dia.) and Type II CNT (30-50 nm outer dia.) with various concentrations ranging from 0.1% to 0.5% by weight of cement. To evaluate important properties such as flexural strength, strain to failure, elastic modulus and modulus of toughness of the CNT admixed specimens at different curing periods, flexural bending tests were performed. Results show that composites with Type II CNTs gave more strength as compared to Type I CNTs. The highest increase in strength (flexural and compressive) is of the order of 22% and 33%, respectively, compared to control samples. Modulus of toughness at 28 days showed highest improvement of 265% for Type II 0.3% CNT composites. It is obvious that an optimum percentage of CNT could exists for composites to achieve suitable reinforcement behaviour and desired strength properties. Based on the parametric study, a tentative optimum CNT concentration (0.3% by weight of cement) has been proposed. Scanning electron microscope image shows perfect crack bridging mechanism; several of the CNTs were shown to act as crack arrestors across fine cracks along with some CNTs breakage.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Experimental research on the behavior of circular SFRC columns reinforced longitudinally by GFRP rebars

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Computers and Concrete
    • /
    • 제31권6호
    • /
    • pp.513-525
    • /
    • 2023
  • This research presents the experimental and theoretical evaluations on circular steel-fiber-reinforced-concrete (SFRC) columns reinforced by glass-fiber-reinforced-polymer (GFRP) rebar under the axial compressive loading. Test programs were designed to investigate and compare the effect of different parameters on the structural behavior of columns by performing tests. Theses variables included conventional concrete (CC), fiber concrete (FC), steel/GFRP longitudinal rebars, and transversal rebars configurations. A total of 16 specimens were constructed and categorized into four groups in terms of different rebar-concrete configurations, including GFRP-rebar-reinforced-CC columns (GRCC), GFRP-rebar-reinforced-FC columns (GRFC), steel-rebar-reinforced-CC columns (SRCC) and steel-rebar- reinforced-FC columns (SRFC). Experimental observations displayed that failure modes and cracking patterns of four groups of columns were similar, especially in pre-peak branches of load-deflection curves. Although the average ultimate axial load of columns with longitudinal GFRP rebars was obtained by 17.9% less than the average ultimate axial load of columns with longitudinal steel rebars, the average axial ductility index (DI) of them was gained by 10.2% higher than their counterpart columns. Adding steel fibers (SFs) into concrete led to the increases of 7.7% and 6.7% of the axial peak load and the DI of columns than their counterpart columns with CC. The volumetric ratio had greater efficiency on peak loads and DIs of columns than the type of transversal reinforcement. A simple analytical equation was proposed to predict the axial compressive capacity of columns by considering the axial involvement of longitudinal GFRP rebars, volumetric ratio, and steel spiral/hoop rebar. There was a good correlation between test results and predictions of the proposed equation.