DOI QR코드

DOI QR Code

Behavior of self-compacting recycled concrete filled aluminum tubular columns under concentric compressive load

  • Yasin Onuralp Ozkilic (Necmettin Erbakan University, Faculty of Engineering, Department of Civil Engineering) ;
  • Emrah Madenci (Necmettin Erbakan University, Faculty of Engineering, Department of Civil Engineering) ;
  • Walid Mansour (Department of Civil Engineering, Faculty of Engineering) ;
  • I.A. Sharaky (Department of Materials Engineering, Faculty of Engineering, Zagazig University) ;
  • Sabry Fayed (Department of Civil Engineering, Faculty of Engineering)
  • Received : 2023.02.24
  • Accepted : 2024.04.09
  • Published : 2024.05.10

Abstract

Thirteen self-compacting recycled concrete filled aluminium tubular (SCRCFAT) columns were tested under concentric compression loads. The effects of the replacement ratio of the recycled concrete aggregate (RCA) and steel fibre (SF) reinforcement on the structural performance of the SCRCFAT columns were studied. A control specimen (C000) was cast with normal concrete without SF to be reference for comparison. Twelve columns were cast using RCA, six columns were cast using concrete incorporating 2% SF while the rest of columns were cast without SF. Failure mode, ductility, ultimate load capacity, axial deformation, ultimate strains, stress-strain response, and stiffness of the SCRCFAT columns were studied. The results showed that, the peak load of tested SCRCFAT columns incorporating 5-100 % RCA without SF reduced by 2.33-11.28 % compared to that of C000. Conversely, the peak load of tested SCRCFAT columns incorporating 5-100% RCA in addition to 2% SF increased by 21.1-40.25%, compared to C000. Consequently, the ultimate axial deformation (Δ) of column C100 (RCA=100% and SF 0%) increased by about 118.9 % compared to C000. The addition of 2% SF to the concrete mix decreased the axial deformation of SCRCFAT columns compared to those cast with 0% SF. Moreover, the stiffness of the columns cast without SF decreased as the RCA % increased. In contrast, the columns stiffness cast with 2% SF increased by 26.28-89.7 % over that of C000. Finally, a theoretical model was proposed to predict the ultimate loads tested SCRCFAT columns and the obtained theoretical results agreed well with the experimental results.

Keywords

Acknowledgement

The experimental tests were carried out by the reinforced concrete laboratory of the faculty of Engineering, Kafrelsheikh University, Egypt.

References

  1. ACI Committee 318 (2011), Building Code Requirements for Structural Concrete (ACI 318-11), American Concrete Institute.
  2. Akono A.T., Chen, J., Zhan, M. and Shah, S.P. (2021), "Basic creep and fracture response of fine recycled aggregate concrete", Constr. Build. Mater. 266(2021) 121107. https://doi.org/10.1016/j.conbuildmat.2020.121107. 
  3. Aksoylu, C., Ozkilic, Y.O., Hadzima-Nyarko, M., Isik, E. and Arslan, M.H. (2022), "Investigation on improvement in shear performance of reinforced-concrete beams produced with recycled steel wires from waste tires", Sustainability, 14(20), 13360. 
  4. Altun M.G. and Oltulu, M. (2020), "Effect Of different types of fiber utilization on mechanical properties of recycled aggregate concrete containing", Silica Fume, J. Green Build., 15(2020), 119-136. https://doi.org/10.3992/1943-4618.15.1.119. 
  5. Ashok, M., Jayabalan, P., Saraswathy, V. and Muralidharan, S. (2020), "A study on mechanical properties of concrete including activated recycled plastic waste", Adv. Concrete Construct., 9(2), 207-215. https://doi.org/10.12989/acc.2020.9.2.207. 
  6. Basaran, B., Kalkan, I., Aksoylu, C., Ozkilic, Y.O. and Sabri, M.M.S. (2022), "Effects of waste powder, fine and coarse marble aggregates on concrete compressive strength", Sustainability, 14(21), 14388. 
  7. Celik, A.I., Ozkilic, Y.O., Zeybek, O., Karalar, M., Qaidi, S., Ahmad, J. and Bejinariu, C. (2022), "Mechanical behavior of crushed waste glass as replacement of aggregates", Materials, 15(22), 8093. 
  8. Celik, A.I., Ozkilic, Y.O., Zeybek, O., Ozdoner, N. and Tayeh, B.A. (2022), "Performance assessment of fiber-reinforced concrete produced with waste lathe fibers", Sustainability, 14(19), 11817. 
  9. Dong, C.X., Kwan, A.K.H. and Ho, J.C.M. (2016), "Axial and lateral stress-strain model for concrete-filled steel tubes with FRP jackets", Eng. Struct., 126, 365-378. https://doi.org/10.1016/j.jcsr.2016.03.031. 
  10. Egyptian Code for the Design and Construction of Concrete Structures, ECP 203-2018, Tests Guide, Part II (aggregates test), page 2-13. 
  11. Emara M., Mohamed, H.A., Rizk, M.S. and Hu, J.W. (2021), "Behavior of ECC columns confined using steel wire mesh under axial loading", J. Build. Eng., 43(2021) 102809. https://doi.org/10.1016/j.jobe.2021.102809. 
  12. Fayed, S., Madenci, E., Ozkilic, Y.O. and Mansour, W. (2023), "Improving bond performance of ribbed steel bars embedded in recycled aggregate concrete using steel mesh fabric confinement", Construct. Build. Mater., 369, 130452. 
  13. Ghasemi, M., Zhang, C., Khorshidi, H., Zhu, L. and Hsiao, P. (2023), "Seismic upgrading of existing RC frames with displacement-restraint cable bracing", Eng. Struct., 282, 115764. https://doi.org/10.1016/j.engstruct.2023.115764. 
  14. Guneyisi, E., Gesoglu, M., Algin, Z. and Yazici, H. (2014), "Effect of surface treatment methods on the properties of self-compacting concrete with recycled aggregates", Construct. Build. Mater., 64, 172-183. https://doi.org/10.1016/j.conbuildmat.2014.04.090. 
  15. Hadi, M.N.S. (2006), "Behaviour of FRP wrapped normal strength concrete columns unde eccentric loading", Compos. Struct., 72(2006) 503-511. https://doi.org/10.1016/j.compstruct.2005.01.018. 
  16. Hadi, M.N.S. (2007), "Behaviour of FRP strengthened concrete columns under eccentric compression loading", Compos. Struct., 77(2007) 92-96. https://doi.org/10.1016/j.compstruct.2005.06.007. 
  17. Hamoda A., Abdelazeem, F. and Emara, M. (2021), "Concentric compressive behavior of hybrid concrete-Stainless Steel Double-Skin Tubular Columns incorporating High Performance Concretes", Thin-Wall. Struct., 159(2021) 107297. https://doi.org/10.1016/j.tws.2020.107297. 
  18. Han L.H. and Yao, G.H. (2004), "Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)", Thin-Wall. Struct., 42(2004), 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016. 
  19. Han, L.H., Ren, Q.X. and Li, W. (2011), "Tests on stub stainless steel-concrete-carbon steel double-skin tubular (DST) columns", J. Construct. Steel Res., 67(3), 437-452. https://doi.org/10.1016/j.jcsr.2010.09.010. 
  20. Han, L.H., Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Construct. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004. 
  21. Han, Q.H., Wang, Y.H., Xu, J. and Xing, Y. (2016), "Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams", Steel Compos. Struct., 22(2), 353-368. https://doi.org/10.12989/scs.2016.22.2.353. 
  22. He, H., Qiao, H., Sun, T., Yang, H. and He, C. (2024), "Research progress in mechanisms, influence factors and improvement routes of chloride binding for cement composites", J. Build. Eng., 86, 108978. https://doi.org/10.1016/j.jobe.2024.108978. 
  23. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021b), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266. 
  24. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021a), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768. 
  25. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725. 
  26. Karalar, M., Bilir, T., Cavuslu, M., Ozkilic, Y.O. and Sabri, M.M.S. (2022), "Use of recycled coal bottom ash in reinforced concrete beams as replacement for aggregate", Front. Mater, 9, 1064604. 
  27. Karalar, M., Ozkilic, Y.O., Aksoylu, C., Sabri, M.M.S., Beskopylny, A.N., Stel'Makh, S.A. and Shcherban, E.M. (2022), "Flexural behavior of reinforced concrete beams using waste marble powder towards application of sustainable concrete", Front. Mater., 9, 1068791. 
  28. Karalar, M., Ozkilic, Y.O., Deifalla, A.F., Aksoylu, C., Arslan, M. H., Ahmad, M. and Sabri, M.M.S. (2022), "Improvement in bending performance of reinforced concrete beams produced with waste lathe scraps", Sustainability, 14(19), 12660. 
  29. Kiran, D., Saini, B. and Aggarwal, P. (2018), "Effect of accelerators with waste material on the properties of cement paste and mortar", Comput. Concrete, 22(2), 153-159. https://doi.org/10.12989/cac.2018.22.2.153. 
  30. Konno, K., Sato, Y., Kakuta, Y. and Ohira, M. (1997), "Property of recycled concrete column encased by steel tube subjected to axial compression", Trans. Japan Concr. Inst., 19 (1997) 231-238. 
  31. Konno, K., Sato, Y., Ueda, T. and Onaga, M. (1998), "Mechanical property of recycled concrete under lateral confinement", Trans. Japan Concr. Inst., 20(1998) 287-292. 
  32. Kou S.C. and Poon, C.S. (2009), "Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates", Cem. Concr. Compos., 31(2009) 622-627. https://doi.org/10.1016/j.cemconcomp.2009.06.005. 
  33. Lam D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64(2008), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012. 
  34. Li, J.T., Chen, Z.P., Xu, J.J., Jing, C.G. and Xue, J.Y. (2018), "Cyclic behavior of concrete-filled steel tubular column-reinforced concrete beam frames incorporating 100% recycled concrete aggregates", Adv. Struct. Eng., 21(12), 1802-1814 https://doi.org/10.1177/1369433218755521. 
  35. Li, P., Yang, T., Zeng, Q., Xing, F. and Zhou, Y. (2021), "Axial stress-strain behavior of carbon FRP-confined seawater sea-sand recycled aggregate concrete square columns with different corner radii", Compos. Struct., 262, 113589. https://doi.org/10.1016/j.compstruct.2021.113589. 
  36. Li, Y.L., Zhao, X.L., Raman, R.S. and Yu, X. (2018), "Axial compression tests on seawater and sea sand concrete-filled double-skin stainless steel circular tubes", Eng. Struct., 176, 426-438. https://doi.org/10.1016/j.engstruct.2018.09.040. 
  37. Li, Y.L., Zhao, X.L., Singh, R.R. and Al-Saadi, S. (2016), "Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns", Thin-Wall. Struct., 106, 390-406. https://doi.org/10.1016/j.tws.2016.05.014. 
  38. Li, Y.L., Zhao, X.L., Singh, R.R. and Al-Saadi, S. (2016), "Tests on seawater and sea sand concrete-filled CFRP, BFRP and stainless steel tubular stub columns", Thin-Wall. Struct., 108, 163-184. https://doi.org/10.1016/j.tws.2016.08.016. 
  39. Li, Z., Gao, M., Lei, Z., Tong, L., Sun, J., Wang, Y. and Jiang, X. (2023), "Ternary cementless composite based on red mud, ultrafine fly ash, and GGBS: Synergistic utilization and geopolymerization mechanism", Case Studies Construct. Mater., 19, e02410. https://doi.org/10.1016/j.cscm.2023.e02410. 
  40. Long, X., Mao, M., Su, T., Su, Y. and Tian, M. (2023), "Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates", Defence Technol., 23, 100-111. https://doi.org/10.1016/j.dt.2022.02.003. 
  41. Ma, H., Dong, J., Liu, Y. and Guo, T. (2018), "Compressive behaviour of composite columns composed of RAC-filled circular steel tube and profile steel under axial loading", J. Construct. Steel Res., 143, 72-82. https://doi.org/10.1016/j.jcsr.2017.12.020. 
  42. Mahgub, M., Ashour, A., Lam, D. and Dai, X. (2017), "Tests of self-compacting concrete filled elliptical steel tube columns", Thin-Wall. Struct., 110, 27-34. https://doi.org/10.1016/j.tws.2016.10.015. 
  43. Mansour, W. and Fayed, S. (2021), "Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers", Steel Compos. Struct., 41(3), 317-334. 
  44. Manzi S., Mazzotti, C. and Bignozzi, M.C. (2017), "Self-compacting concrete with recycled concrete aggregate: Study of the long-term properties", Constr. Build. Mater., 157(2017), 582-590. https://doi.org/10.1016/j.conbuildmat.2017.09.129. 
  45. Medina, N.F., Barluenga, G. and Hernandez-Olivares, F. (2015), "Combined effect of Polypropylene fibers and Silica Fume to improve the durability of concrete with natural Pozzolans blended cement", Construct. Build. Mater., 96, 556-566. https://doi.org/10.1016/j.conbuildmat.2015.08.050. 
  46. Muciaccia G., Giussani, F., Rosati, G. and Mola, F. (2011), "Response of self-compacting concrete filled tubes under eccentric compression", J. Constr. Steel Res., 67(2011) 904-916. https://doi.org/10.1016/j.jcsr.2010.11.003. 
  47. Pereira-de-Oliveira, L.A., Nepomuceno, M.C.S., Castro-Gomes, J. P. and Vila, M.D.F.C. (2014), "Permeability properties of self-compacting concrete with coarse recycled aggregates", Construct. Build. Mater., 51, 113-120. https://doi.org/10.1016/j.conbuildmat.2013.10.061. 
  48. Qaidi, S., Al-Kamaki, Y., Hakeem, I., Dulaimi, A.F., Ozkilic, Y., Sabri, M. and Sergeev, V. (2023), "Investigation of the physical-mechanical properties and durability of high-strength concrete with recycled PET as a partial replacement for fine aggregates", Front. Mater., 10, 1101146. 
  49. Ramesh R.B., Mirza, O. and Kang, W. (2019), "Mechanical properties of steel fiber reinforced recycled aggregate concrete", Struct. Concr. 20(2019) 745-755. https://doi.org/10.1002/suco.201800156. 
  50. Ranjith S., Venkatasubramani, R. and Sreevidya, V. (2017), "Comparative study on durability properties of engineered cementitious composites with polypropylene fiber and glass fiber", Arch. Civ. Eng., 63(2017) 83-101. 
  51. Raza A., Rafique, U. (2021), "Efficiency of GFRP bars and hoops in recycled aggregate concrete columns: Experimental and numerical study", Compos. Struct., 255(2021). https://doi.org/10.1016/j.compstruct.2020.112986. 
  52. Raza, A., Manalo, A.C., Rafique, U. and AlAjarmeh, O.S. (2021), "Concentrically loaded recycled aggregate geopolymer concrete columns reinforced with GFRP bars and spirals", Compos. Struct., 268, 113968. https://doi.org/10.1016/j.compstruct.2021.113968. 
  53. Sabau, M. and Vargas, J. (2018), "Use of e-plastic waste in concrete as a partial replacement of coarse mineral aggregate", Comput. Concrete, 21(4), 377-384. https://doi.org/10.12989/cac.2018.21.4.377. 
  54. Sagoe-Crentsil K.K., Bro, T., Tam, V.W.Y., Soomro, M. and Evangelista, A.C.J. (2021), "Quality improvement of recycled concrete aggregate by removal of residual mortar: A comprehensive review of approaches adopted", Constr. Build. Mater., 288(2021) 123066. https://doi.org/10.1016/j.conbuildmat.2021.123066. 
  55. Sagoe-Crentsil, K.K., Brown, T. and Taylor, A.H. (2001), "Performance of concrete made with commercially produced coarse recycled concrete aggregate", Cement Concrete Res., 31(5), 707-712. https://doi.org/10.1016/S0008-8846(00)00476-2. 
  56. Sakino K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2004) 180-188. https://doi.org/https://ascelibrary.org/doi/10.1061/(ASCE)0733-9445(2004)130:2(180). 
  57. Santos S., da Silva, P.R. and de Brito, J. (2019), "Self-compacting concrete with recycled aggregates - A literature review", J. Build. Eng., 22(2019) 349-371. https://doi.org/10.1016/j.jobe.2019.01.001. 
  58. Singh, A., Wang, Y., Zhou, Y., Sun, J., Xu, X., Li, Y. and Wang, X. (2023), "Utilization of antimony tailings in fiber-reinforced 3D printed concrete: A sustainable approach for construction materials", Construct. Build. Mater., 408, 133689. https://doi.org/10.1016/j.conbuildmat.2023.133689. 
  59. Sun, G., Kong, G., Liu, H. and Amenuvor, A.C. (2017), "Vibration velocity of X-section cast-in-place concrete (XCC) pile-raft foundation model for a ballastless track", Canadian Geotech. J., 54(9), 1340-1345. https://doi.org/10.1139/cgj2015-0623. 
  60. Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2022), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153. 
  61. Thomas J., Thaickavil, N.N. and Wilson, P.M. (2018), "Strength and durability of concrete containing recycled concrete aggregates", J. Build. Eng., 19(2018) 349-365. https://doi.org/10.1016/j.jobe.2018.05.007. 
  62. Tucci, F. and Vedernikov, A. (2021), "Design criteria for pultruded structural elements", Encyclopedia Mater. Compos., 3, 51-68. https://doi.org/10.1016/B978-0-12-819724-0.00086-0. 
  63. Uy B., Tao, Z. and Han, L.H. (2011), "Behaviour of short and slender concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 67(2011) 360-378. https://doi.org/10.1016/j.jcsr.2010.10.004. 
  64. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I. (2021), "Analysis of spring-in deformation in L-shaped profiles pultruded at different pulling speeds: Mathematical simulation and experimental results", https://doi.org/10.25518/esaform21.4743. 
  65. Wang Y., Chen, J. and Geng, Y. (2015), "Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns", Eng. Struct., 86(2015) 192-212. https://doi.org/10.1016/j.engstruct.2015.01.007. 
  66. Wang, W., Jin, Y., Mu, Y., Zhang, M. and Du, J. (2023), "A novel tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces", Virtual Phys. Prototyping, 18(1), e2203701. https://doi.org/10.1080/17452759.2023.2203701. 
  67. Wang, X., Li, L., Xiang, Y., Wu, Y. and Wei, M. (2024), "The influence of basalt fiber on the mechanical performance of concrete-filled steel tube short columns under axial compression", Front. Mater., 10. https://doi.org/10.3389/fmats.2023.1332269. 
  68. Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H. and Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500. 
  69. Wu C.R., Zhu, Y.G., Zhang, X.T. and Kou, S.C. (2018), "Improving the properties of recycled concrete aggregate with bio-deposition approach", Cem. Concr. Compos., 94(2018), 248-254. https://doi.org/10.1016/j.cemconcomp.2018.09.012. 
  70. Wu, Y., Wang, X., Fan, Y., Shi, J., Luo, C. and Wang, X. (2024), "A study on the ultimate span of a concrete-filled steel tube arch bridge", Buildings, 14(4), 896. https://doi.org/10.3390/buildings14040896. 
  71. Xie, J., Kou, S.C., Ma, H., Long, W.J., Wang, Y. and Ye, T.H. (2021), "Advances on properties of fiber reinforced recycled aggregate concrete: Experiments and models", Construct. Build. Mater., 277, 122345. https://doi.org/10.1016/j.conbuildmat.2021.122345. 
  72. Xiong M.X., Xu, Z., Chen, G.M. and Lan, Z.H. (2020), "FRP-confined steel-reinforced recycled aggregate concrete columns: Concept and behaviour under axial compression", Compos. Struct., 246(2020), https://doi.org/10.1016/j.compstruct.2020.112408. 
  73. Xu G., Shen, W., Zhang, B., Li, Y., Ji, X. and Ye, Y. (2018), "Properties of recycled aggregate concrete prepared with scattering-filling coarse aggregate process", Cem. Concr. Compos., 93(2018) 19-29. https://doi.org/10.1016/j.cemconcomp.2018.06.013. 
  74. Yang Y.F. and Ma, G.L. (2013), "Experimental behaviour of recycled aggregate concrete filled stainless steel tube stub columns and beams", Thin-Wall. Struct., 66(2013) 62-75. https://doi.org/10.1016/j.tws.2013.01.017. 
  75. Yang Y.F., Han, L.H. (2006), "Experimental behaviour of recycled aggregate concrete filled steel tubular columns", J. Constr. Steel Res., 62(2006) 1310-1324. https://doi.org/10.1016/j.jcsr.2006.02.010. 
  76. Yao, X., Lyu, X., Sun, J., Wang, B., Wang, Y., Yang, M. and Wang, X. (2023), "AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition", Construct. Build. Mater., 375, 130898. https://doi.org/10.1016/j.conbuildmat.2023.130898. 
  77. Yu F., Chen, L, Bu, S., Huang, W. and Fang, Y. (2020), "Experimental and theoretical investigations of recycled self-compacting concrete filled steel tubular columns subjected to axial compression", Constr. Build. Mater., 248(2020) 118689. https://doi.org/10.1016/j.conbuildmat.2020.118689. 
  78. Zeybek, O., Ozkilic, Y.O., Celik, A.I., Deifalla, A.F., Ahmad, M. and Sabri Sabri, M.M. (2022), "Performance evaluation of fiber-reinforced concrete produced with steel fibers extracted from waste tire", Front. Mater., 692. 9, 1057128. 
  79. Zeybek, O., Ozkilic, Y.O., Karalar, M., Celik, A.I., Qaidi, S., Ahmad, J. and Burduhos-Nergis, D.P. (2022), "Influence of replacing cement with waste glass on mechanical properties of concrete", Materials, 15(21), 7513. 
  80. Zhang Y., Luo, W., Wang, J., Wang, Y., Xu, Y. and Xiao, J. (2019), "A review of life cycle assessment of recycled aggregate concrete", Constr. Build. Mater., 209(2019) 115-125. https://doi.org/10.1016/j.conbuildmat.2019.03.078. 
  81. Zhang, X., Liu, X., Zhang, S., Wang, J., Fu, L., Yang, J. and Huang, Y. (2023), "Analysis on displacement-based seismic design method of recycled aggregate concrete-filled square steel tube frame structures", Struct. Concrete, 24(3), 3461-3475. https://doi.org/10.1002/suco.202200720. 
  82. Zhang, X., Zhou, G., Liu, X., Fan, Y., Meng, E., Yang, J. and Huang, Y. (2023), "Experimental and numerical analysis of seismic behaviour for recycled aggregate concrete filled circular steel tube frames", Comput. Concrete, 31(6), 537-543. https://doi.org/10.12989/cac.2023.31.6.537.