• Title/Summary/Keyword: strain measurement sensor

Search Result 255, Processing Time 0.027 seconds

Measurement of Residual and Internal Strain of 3-D Braided Hybrid Composite using Embedded FBG Sensor (FBG 센서를 삽입한 3차원 브레이드 하이브리드 복합재료의 잔류변형률 및 내부변형률 측정)

  • Jung, Kyung-Ho;Kim, Don-Gun;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.21-24
    • /
    • 2005
  • Three dimensional circular braided Glass/Aramid hybrid fabric/epoxy resin composite was fabricated. FBG sensor was embedded along the braid yam in order to monitor the internal dimensional changes of the 3-D braid composite. The amount of cure and thermal shrinkage of epoxy resin was also determined using FBG sensor system. FBG sensors with different grating length were embedded and their response were compared. The thermo-optic coefficient of FBG sensor was measured by several preliminary experiments. The internal strain that measured by FBG sensor and electric strain gauge was compared during compressive test. The released residual strain of the fabricated tubular composite was estimated using cutting method. The internal strain of the composite was estimated using FBG sensor system, and the result was compared with the value from electric strain gauge. It was found that FBG sensor system is a very useful technique to investigate inside region of complicated structure.

  • PDF

Measurement of Structural Stress Concentration by PVDF Film Sensors (압전필름센서에 의한 구조물의 응력집중의 측정)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Choi, Man-Yong;Lim, Jong-Mook;Kim, In-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.109-119
    • /
    • 2000
  • PVDF film sensor was applied to measure the stress concentration for monitoring the structural integrity. The strain calibration of this film sensor was performed by the bending test of aluminum beam. The PVDF sensor and the electrical strain gage were bonded on the beam. When the beam was loaded, the output of electrical strain gage was compared with the output of the PVDF sensor. The waveform of PVDF sensor output was shown as the same form of the output of electrical strain gage. The gain was determined as 1.7 by comparing these two signals to determine the exact value of the strain. In order to experiment the stress concentration, the stress field was analyzed by finite element analysis. The tensile test of notched steel specimens was conducted to develop the measurement technique of stress concentration. The output voltage ratio between the PVDF sensor near the notch and the PVDF sensor far from the notch could give the information about the load bearing capacity of steel specimen.

  • PDF

Multi-Point Optical Fiber Grating Strain Sensor System (광섬유 격자 다중화 스트레인 센서 시스템)

  • Lee, Yong-Wook;Jung, Jae-Hoon;Chung, Seung-Hwan;Lee, Byoung-Ho;Kim, Nam-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.147-151
    • /
    • 2001
  • An optical fiber sensor is capable of nondestructive measurement of a structure and it has an advantage of the immunity to electromagnetic interference because light is not affected by electromagnetic wave. In addition, if optical fibers are buried in an object like a concrete, this sensor tan analyze defects and physical status of the object without disassembling it. Especially, the fiber Bragg grating sensor is a promising optical fiber sensor capable of nondestructive test of such an object. A fiber Bragg grating has the characteristics of reflecting or blotting light of a specific wavelength. If we apply physical quantity like strain to the fiber Bragg grating, the center wavelength of the reflected light is shifted and then we can find the physical quantity applied to the fiber Bragg grating by measuring the center wavelength shift of the reflected light. The fiber Bragg grating sensor capable ot static and dynamic strain measurement is being used in health-monitoring of buildings, structures, etc. Recently increasing is interest in dynamic strain measurement inevitable to the civil structures such as roads and bridges. In this study we implemented the optical fiber sensor system which can measure dynamic strain at multiple points using Fabry-Perot wavelength demodulation. And we measured the static and dynamic strain using this sensor system with a test structure(cantilever). Measurement results were similar to those obtained with the conventional electrical measurement methods.

  • PDF

Measurements of Thermal Gradient and Thermal Strain of Mortar Specimens Using Fiber Bragg Grating Sensor (광섬유 격자 센서를 이용한 모르타르시편의 온도구배 및 열 변형 측정)

  • Rhim, Hong-Chul;Lee, Eun-Joo;Chun, Heung-Jae;Park, Dong-Nyuck
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.133-138
    • /
    • 2003
  • As concrete structures are heated, thermal strain can be developed. Because of the boundary conditions, the thermal stress may be arisen. Thermal strain and temperature were measured simultaneously using an optical fiber sensor. Fiber Bragg Grating Sensor(FBG sensor) was used in the measurement. Because it can measure the strains more than two points with one line, it was possible to measure both thermal strain and temperature with one line. To compare data measured by FBG sensor, strain and temperature were measured using strain gauge and thermocouple. The FBG sensor could measure the strain under the temperature greater than $60^{\circ}C$ but strain gauge couldn't. Both the FBG temperature sensor and thermocouple could measure the temperature and the results are related each other linearly.

Simultaneous Measurement of Strain and Temperature by use of Fiber Bragg Grating Written in an Erbium: Ytterbium-Doped Fiber (단일 광섬유 격자와 Erbium과 Ytterbium 첨가된 광섬유를 이용한 스트레인 및 온도의 동시 측정)

  • Jung, Jae-Hoon
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.117-120
    • /
    • 2004
  • We demonstrate a fiber-optic sensor scheme, capable of the simultaneous measurement of strain and temperature using a single fiber Bragg grating written in an erbium: ytterbium-doped fiber. This novel and compact fiber grating based sensor scheme can be used for synchronous measurement of strain and temperature over ranges of $1100\;{\mu}{\varepsilon}$ and $50-180\;^{\circ}C$ with rms errors of $55.8\;{\mu}{\varepsilon}$ and $3^{\circ}C$, respectively. The simple and low-cost sensor approach has a considerable potential, particularly for wide-range strain sensing applications in which high resolution is not required.

  • PDF

Railway structure health monitoring using innovative sensing technologies (첨단계측센서를 이용한 철도 구조물의 모니터링)

  • Lee, Kyu-Wan;Jung, Sung-Hoon;Park, Eun-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.772-777
    • /
    • 2008
  • Recent development of fiber optic sensors and wireless sensor technology, made structural health monitoring of railway structures cost effective. In this paper, a micro bending fiber optic rail pad sensors are evaluated for train axle force measurement. In order to assess the usability of FBG fiber optic sensors for short-term bridge measurement, the FBG sensors and conventional strain gauges are installed at the same points and the strain results are compared. Also the impact factors are calculated using the FBG strain responses and the results are compared with the conventional sensor responses. A running KTX train was instrumented with wireless sensor system to measure the vibration characteristics and the results are compared with conventional wire sensor system.

  • PDF

Fabrication of a Multiplexing Sensor Probe for Measuring the Blade Deflection of a Wind Power Generator (풍력발전기 블레이드 처짐 측정을 위한 다중화 센서 탐촉자 설계 제작)

  • Kim, Ji-Dea;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.178-185
    • /
    • 2014
  • This paper describes a fabrication multiplexing sensor probe that employs a fiber Bragg grating(FBG) based on multiple measurements to determine the blade deflection of a wind power generator the reliability analysis of this probe is also presented. To diminish the temperature sensitivity of the FBG sensor, we form multiple CFRPs onto the upper and lower layers of the FBG and package it with an epoxy resin. As a result, the depth of the CFRP is 1mm, and the temperature sensitivity is $2.39pm/^{\circ}C$. We construct a sensor network utilizing the fabricated sensor with a blade beam model. As the number of pendulums is increased on the fore-end of the beam, the strain value is measured. The strain variation is calculated from the measurement of the load on the blade beam model by monitoring the strain of the FBG sensor. When the linear equation is applied, the strain error is 0.4% and when the finite difference method is used, the tip deflection error is 3.3%. The displacement error derived from the strain value of the FBG sensor is 4.39%. The calculated result between the measured value of the dead-end of the beam and the strain is less than 2.46% tip distortion error. Therefore, our proposed multiplexing sensor probe is a low-cost and high-reliability solution for a commercial wind power generator.

Patch-type large strain sensor using elastomeric composite filled with carbon nanofibers

  • Yasuoka, Tetsuo;Shimamura, Yoshinobu;Todoroki, Akira
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.146-151
    • /
    • 2013
  • Carbon nanofibers (CNFs) are electrically conductive. When CNFs are used as fillers in resin, this electrical conductivity can be yielded without adversely affecting the mechanical properties of the resin. When an elastomer is adopted as the resin, a conductive elastomer can then be produced. Due to its flexibility and conductive properties, a large strain sensor based on changes in resistivity may be produced, for strain sensing in flexible structures. In this study, a patch-type large strain sensor using resistivity change in a CNF/elastomer composite was proposed. The measurement limits of the sensor were investigated experimentally, and the limit was found to be 40%, which greatly exceeded the limits of conventional metal-foiled strain gages. Also, the proposed CNF/elastomer large strain sensor can be used to measure flexible materials, while conventional strain gages cannot be used to measure such strains.

Monitoring of Beam-column Joint Using Optical Fiber Sensors (광섬유센서를 이용한 Beam-column 조인트의 하중에 따른 변위 계측)

  • Kim, Ki-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.3-11
    • /
    • 2005
  • For monitoring of the civil and building structure, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplexibility in one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of beam-column joints of structures. We expect that the fiber optic sensors replace electrical strain gauges. The commercial electric strain gauges show good stability and dominate the strain measurement market. However, they lack durability and long term stability for continuous monitoring of the structures. In order to apply the strain gauges, we only have to attach them to the surfaces of the structures. In this paper, we investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show nice response to the structural behavior of the joint.