• Title/Summary/Keyword: strain localization

Search Result 161, Processing Time 0.021 seconds

Secretion and Localization of Pseudomonas auratiaca Levansucrase Expressed in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 발현된 Pseudomonas aurantiaca Levansucrase의 분비국재성)

  • 임채권;김광현;김철호;이상기;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.206-211
    • /
    • 2004
  • Levansucrase gene(lscA) from Pseudomonas aurantiaca was subcloned downstream of GAL1 promoter in pYES 2.0 and pYInu-AT [GAL10 promoter + exoinulinase signal sequence of Kluyveromyces marxianus], resulting pYES-lscA and p YInu-lscA, respectively. The two expression plasmids were introduced into an invertase-deficient strain, Sacchromayces cerevisiae SEY2102, and transformants with high activity of levansucrase were selected. When each yeast transform ants was cultivated in medium containing galactose, the extracellular and intracellular activities of levansucrase reached about 8.62 U/ml with the strain harboring pYES-lscA and 5.43 U/ml with the strain harboring pYInu-lscA. The levansucrase activity of 80% was detected in the periplasmic space and cytoplasm. The levansucrase activity in the medium of SEY2102/pYInu-lscA was 0.87 U/ml whereas that of SEY2102/pYES-lscA was 0.47 U/ml, which implying the exoinulinase signal sequence didn't enhance the secretion efficiency of levansucrase. Furthermore, the recombinant levansucrase expressed in yeast seems to be produced as a hyper-glycosylated form.

Assessment of Shear Band Characteristics in Granular Soils Using Digital Image Analysis Technique for Plane Strain Tests (평면변형률 시험에서 이미지 해석을 통한 사질토의 전단면 특성 평가)

  • Jang, Eui-Ryong;Jung, Young-Hoon;Kim, Jun-Young;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.51-65
    • /
    • 2011
  • Shear banding, the localization of deformation into thin zones, has a quite practical relevance, as stability and deformation characteristics of earth structures are controlled by the soil behavior within the shear band. In this study, for understanding occurrence and developed pattern of shear band, plane strain compression tests were performed on three soils with different particle-size distribution under various conditions. Digital images were captured during the experiments; then, deformation of a specimen was evaluated by digital image analysis technique. The characteristics of a shear band were evaluated from the state shortly after post-peak occurrence to critical state. Additionally, the statistical procedure was developed to determine the reasonable thickness of a shear band.

Homogenization of Elastic Cracks in Hoek-Brown Rock (Hoek-Brown 암석에서 발생된 탄성균열의 균질화)

  • Lee, Youn-Kyou;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.158-166
    • /
    • 2009
  • As a basic study for investigating the development of the stress-induced crack in Hoek-Brown rock, a homogenization technique of elastic cracks is proposed. The onset of crack is monitored by Hoek-Brown empirical criterion, while the orientation of the crack is determined by the critical plane approach. The concept of volume averaging in stress and strain component was invoked to homogenize the representative rock volume which consists of intact rock and cracks. The formulation results in the constitutive relations for the homogenized equivalent anisotropic material. The homogenization model was implemented in the standard FEM code COSMOSM. The numerical uniaxial tests were performed under plane strain condition to check the validity of the propose numerical model. The effect of friction between the loading plate and the rock sample on the mode of deformation and fracturing was examined by assuming two different contact conditions. The numerical simulation revealed that the homogenized model is able to capture the salient features of deformation and fracturing which are observed commonly in the uniaxial compression test.

A modified index for damage detection of structures using improved reduction system method

  • Arefi, Shahin Lale;Gholizad, Amin;Seyedpoor, Seyed Mohammad
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.1-22
    • /
    • 2020
  • The modal strain energy method is one of the efficient methods for detecting damage in the structures. Due to existing some limitations in real-world structures, sensors can only be located on a limited number of degrees of freedom (DOFs) of a structure. Therefore, the mode shape values in all DOFs of structures cannot be measured. In this paper, a modified modal strain energy based index (MMSEBI) is introduced to locate damaged elements of structures when a limited number of sensors are used. The proposed MMSEBI is based on the reconstruction of mode shapes using Improved Reduction System (IRS) method. Therefore, in the first step by employing IRS method, mode shapes in slave degrees of freedom are estimated by those of master degrees of freedom. In the second step, the proposed MMSEBI is used to located damage elements. In order to evaluate the efficiency of the proposed method, two numerical examples are considered under different damage patterns considering the measurement noise. Moreover, the universal threshold based on statistical hypothesis testing principles is applied to damage index values. The results show the effectiveness of the proposed MMSEBI for the structural damage localization when comparing with the available damage index named MESBI. The results demonstrate that the presented method can be used as a practical strategy for structural damage identification, especially when a limited number of sensors are installed on the structure. Finally, the combination of MMSEBI and IRS method can provide a reliable tool to identify the location of damage accurately.

Simulation study on CFRP strengthened reinforced concrete beam under four-point bending

  • Zhang, Dongliang;Wang, Qingyuan;Dong, Jiangfeng
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.407-421
    • /
    • 2016
  • This paper presents numerical modeling of the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened RC (reinforced concrete) beams under four-point bending. Simulation of debonding at the CFRP-concrete interface was focused, as it is the main failure mode of CFRP strengthened RC beams. Here, cohesive layer was employed to model the onset of debonding, which further helps to describe the post debonding behavior of the CFRP strengthened RC beam. In addition, the XFEM approach was applied to investigate the effects of crack localization on strain field on CFRP sheet and rebar. The strains obtained from the XFEM correlate better to the test results than that from CDP (concrete damaged plasticity) model. However, there is a large discrepancy between the experimental and simulated loaddisplacement relationships, which is due to the simplification of concrete constitutive law.

Experiments and Analysis of Concrete Columns Confined with Lateral Reinforcements (횡구속된 콘크리트 기둥의 실험 및 해석)

  • 송하원;최동휴;변근주;김기수
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.167-178
    • /
    • 1998
  • 횡방향철근에 의하여 적절히 구속된 콘크리트 기둥은 강도증가 및 연성의 확보면에서 유리하다. 본 연구의 목적은 횡방향철근에 의하여 구속된 코아콘크리트의 크기,횡방향철근의 간격비 및 체적철근비 등의 변화에 따른 콘크리트 기둥의 극한강도를 포함한 최대하중 이전의 거동 및 최대하중 이후의 거동을 실험적, 해석적으로 고찰함으로써 콘크리트 기둥의 구속효과정도를 규명하려는데 있다. 본 연구에서는 횡구속된 콘크리트 기둥모형의 압축재하실험을 수행하였으며, 최대하중 이전의 거동에 대하여 연속체적 파괴와 소성을 고려한 3차원 모델링을 통한유한요소해석을 실시하였다. 또한 횡구속된 콘크리트 기둥의 변형률국소화 모델에 의한 파괴해석을 통하여 구속된 콘크리트 기둥의 최대하중 이후의 거동을 재현하였다. 해석결과는 압축재하실험의 결과와 비교, 분석되었으며, 이에 따른 구속효과를 규명하였다.

Bond and ductility: a theoretical study on the impact of construction details - part 2: structure-specific features

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.137-149
    • /
    • 2013
  • The first part of this two-part paper discussed some basic considerations on bond strength and its effect on strain localization and plastic deformation capacity of cracked structural concrete, and analytically evaluated the impacts of the hardening behavior of reinforcing steel and concrete quality on the basis of the Tension Chord Model. This second part assesses the impacts of the most frequently encountered construction details of existing concrete structures which may not satisfy current design code requirements: bar ribbing, bar spacing, and concrete cover thickness. It further evaluates the impacts of the additional structure-specific features bar diameter and crack spacing. It concludes with some considerations on the application of the findings in practice and an outlook on future research needs.

Numerical evaluation for vibration-based damage detection in wind turbine tower structure

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.657-675
    • /
    • 2015
  • In this study, the feasibility of vibration-based damage detection methods for the wind turbine tower (WTT) structure is evaluated. First, a frequency-based damage detection (FBDD) is outlined. A damage-localization algorithm is visited to locate damage from changes in natural frequencies. Second, a mode-shape-based damage detection (MBDD) method is outlined. A damage index algorithm is utilized to localize damage from estimating changes in modal strain energies. Third, a finite element (FE) model based on a real WTT is established by using commercial software, Midas FEA. Several damage scenarios are numerically simulated in the FE model of the WTT. Finally, both FBDD and MBDD methods are employed to identify the damage scenarios simulated in the WTT. Damage regions are chosen close to the bolt connection of WTT segments; from there, the stiffness of damage elements are reduced.

A Study on the Deformation Analysis of Largely Deformed Elasto-Plastic Material Using a Meshfree Method (무요소법에 의한 대변형 탄소성 재료의 변형해석에 관한 연구)

  • Kyu-Taek Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.289-298
    • /
    • 2003
  • Meshfree approximations exhibit significant Potential to solve partial differential equations. Meshfree methods have been successfully applied to various problems which the traditional finite element methods have difficulties to handle including the quasi-static and dynamic fracture, large deformation problems, contact problems, and strain localization problems. Reproducing Kernel Particle Method (RKPM) is used in this research fur to its built-in feature of multi-resolution. the sound mathematical foundation and good numerical performance. A formulation of RKPM is reviewed and numerical examples are given to verify the accuracy of the proposed meshfree method for largely deformed elasto-plastic material.

The Effects of Thickness on the Plastic Instability under Uniaxial Tension in Sheet Metal (판재의 일축인장 소성불안정에 미치는 두께의 영향)

  • Han, K. T.;Kang, D. M.;Koo, Y.;Baek, N. J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.2
    • /
    • pp.58-64
    • /
    • 1989
  • Plastic instability in uniaxial tension of commercial purity Al has been studied with the emphasis of effects of thickness in cold worked specimens and recrystallized specimens. The thickness change gave rise to change in stress state and the amount of strain localization in specimen after diffuse necking. Therefore the thickness of speci- men could control modes of plastic instability. Regardless of recrystallized or cold worked state, the necking mode changed from diffuse necking to local necking, at about 1.5 .approx. 2 mm in thickness.

  • PDF