• 제목/요약/키워드: strain hardening factor

검색결과 64건 처리시간 0.025초

조선 해양 구조물용 강재의 소성 및 파단 특성 V: 온도 의존성을 고려한 변형률 속도에 관한 실험적 연구 (Plasticity and Fracture Behaviors of Marine Structural Steel, Part V: Effects of Strain Rate and Temperature)

  • 정준모;임성우;김경수
    • 한국해양공학회지
    • /
    • 제25권3호
    • /
    • pp.73-84
    • /
    • 2011
  • This is the fifth in a series of companion papers dealing with the dynamic hardening properties of various marine structural steels at intermediate strain rates. Five steps of strain rate levels (0.001, 1, 10, 100, 200/s) and three steps of temperature levels (LT ($-40^{\circ}C$), RT, and HT ($200^{\circ}C$)) were taken into account for the dynamic tensile tests of three types of marine structural steels: API 2W50 and Classifications EH36 and DH36. The total number of specimens was 180 pieces. It was seen that the effects of dynamic hardening became clearer at LT than at RT. Dynamic strain aging accompanying serrated flow stress curves was also observed from high temperature tests for all kinds of steels. The dynamic hardening factors (DHFs) at the two temperature levels of LT and RT were derived at the three plastic strain levels of 0.05, 0.10, 0.15 from dynamic tensile tests. Meanwhile, no DHFs were found for the high temperature tests because a slight negative strain rate dependency due to dynamic strain aging had occurred. A new formulation to determine material constant D in a Cowper-Symonds constitutive equation is provided as a function of the plastic strain rate, as well as the plastic strain level. The proposed formula is verified by comparing with test flow stress curves, not only at intermediate strain rate ranges but also at high strain rate ranges.

리올러지 모델을 이용한 열적 기계적 변형 거동 모사 (A Description of Thermomechanical Behavior Using a Rheological Model)

  • 이금오;홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

철근콘크리트의 3차원 재료비선형해석 (A Three-Dimensional Material Nonlinear Analysis of Reinforced Concrete)

  • 박성수;성재표
    • 콘크리트학회지
    • /
    • 제8권2호
    • /
    • pp.119-127
    • /
    • 1996
  • 본 연구는 철근콘크리트 부재의 3차원 재료적 비선형해석을 하기 위한 것이다. 콘크리트는 3축 비선형 응력-변형률 거동, 균열, 파쇄 및 변형률완화를 포함하는 3차원 16절점 고체요소를 사용하고, 철근은 변형률경화를 갖는 3차원 3절점 트러스요소를 사용한다. 균열 후 골재의 맞물림을 고려하는 유효전단계수를 평가하기 위해서 균열의 진행여부에 따른 전단유지계수를 도입하였으며, 수치해를 얻기 위해 수정뉴턴방법을 사용하였다. 가우스점에서의 해석결과는 그래픽으로 확인된다. 수치예제로서 Krahl의 철근콘크리트 보와 Hedgren의 철근콘크리트 쉘을 채택하여 해석결과와 비교하였다.

결정 소성학을 이용한 반구 박판 성형공정의 전산모사 (Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity)

  • 심정길;금영탁
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.276-281
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By calculating the Euler angles of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between the prediction using crystal plasticity and experiment shows the verification of the crystal plasticity-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

Neck Formation in Drawing Processes of Fibers

  • Chung, Kwansoo;Yoon, Hyungsop;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제2권1호
    • /
    • pp.140-143
    • /
    • 2001
  • To better understand the formation of necking in drawing processes of fibers, strain distributions during drawing processes have been analyzed. For simplicity, one-dimensional incompressible steady flow at a constant temperature was assumed and quasi-static model was used. To describe mechanical properties of solid polymers, non-linear visco-plastic material properties were assumed using the power law type hardening and rate-sensitive equation. The effects of various parameters on the neck formation were matematically analyzed. As material property parameters, strain-hardening parameter, visco-elastic coefficient and strain-rate sensitivity were considered and, for process parameters, the drawing ratio and the process length were considered. It was found that rate-insensitive materials do not reach a steady flow state and the rate-sensitivity plays a key role to have a steady flow. Also, the neck formation is mainly affected by material properties, especially for the quasi-static model. If the process length changes, the strain distribution was found to be proportionally re-distributed along the process line by the factor of the total length change.

  • PDF

단일과대하중에 의한 피로균열전파의 지연거동 (Retardation of Fatigue Crack Propagation by Single Overloading)

  • 김상철;함경춘;강동명
    • 한국안전학회지
    • /
    • 제7권1호
    • /
    • pp.20-29
    • /
    • 1992
  • Effects of strain hardening exponents on the retardation behavior of fatigue crack propagation are experimentally investigated. The retardation of fatigue crack propagation seems to be induced by the crack closure at crack tip. The phenomenon of crack closure becomes remarkable with the increment of strain hardening exponent and magnitude of percent peak load. The ratio of crack growth increment(a$\_$d//w$\_$d/) is influenced by a single overloading (a$\_$d/) and estimated plastic zone size (W$\_$d/=2r$\_$y/) is increased according with the increasing of strain ha.dening exponents. The number of retarded crack growth cycles were (N$\_$d/) decreased as the baseline stress intensity factor .ange( K$\_$b/) was increased. Within the limitation of these experimental results obtained under the single overload, an empirical relation between crack retardation ratio (Nd/N*), strain hardening exponent (n) and percent peak load (%PL) has been proposed as; Nd/N*= exp [PL $.$ PL$.$A(n)+B(n) ] where, A(n)=${\alpha}$n+${\beta}$, B(n)=${\gamma}$n+$\delta$, PL=%PL/100 and ${\alpha}$=0.78, ${\beta}$=0.54, ${\gamma}$=0.58 and $\delta$=-0.01, It is interesting to note that all these constants are identical for materials such as aluminum(A3203), steel(S4SC), steel(SS41) and stainless steel(SUS316) used in this experimental study.

  • PDF

Sabkha층 탄산질 모래의 침하특성 및 상부기초의 거동 (Settlement Characteristics of a Large-Scale Foundation over a Sabkha Layer Consisting of Carbonate Sand)

  • 김석주;한희수
    • 지질공학
    • /
    • 제23권3호
    • /
    • pp.247-256
    • /
    • 2013
  • 중동지역의 Sabkha층 탄산질 모래는 낮은 전단강도를 나타내며, 입자파쇄시 내부공극의 외부노출로 인한 즉시침하와 파쇄입자의 재배열로 인한 시간 의존적 이차침하가 발생된다. 현장 대형기초에 의한 Sabkha층의 침하특성을 분석하기 위하여 Hydrotest를 수행하였고, 실내시험 결과와 비교하였다. 삼축압축시험 결과 일차입자파쇄의 정도에 따라 Sabkha층 GL-1.5 m에서 Strain-hardening, GL-7.0 m에서 Strain-perfect, GL-7.5 m에서 Strain-softening 형태의 응력-변형 거동이 나타났다. 일반적으로 전반전단파괴는 입자가 조밀하고 지반의 강도가 큰 경우 발생하나 Sabkha층 탄산질 모래에서는 Strain-softening 거동 발생시 Strain-hardening과 Strain-perfect 거동에 비하여 오히려 입자파쇄 강도가 작아지는 현상이 발생하였다. 이러한 응력-변형 특성은 상대밀도 증가시 전단강도가 증가하는 석영질 모래의 특성과는 상이한 것이다. 현장 Hydrotest시 입자파쇄의 영향으로 간극수압 소산 후에도 지속적인 이차압축침하가 발생되었으며, 입자파쇄응력이 상대적으로 작고 Strain-softening 거동, 혹은 Strain-perfect 거동을 나타낸 하부 Sabkha층의 입자파쇄가 기초침하에 지배적인 영향을 미친 것으로 판단된다.

The Overstrain of Thick-Walled Cylinders Considering the Bauschinger Effect Facto. (BEF)

  • Ghorbanpour, A.;Loghman, A.;Khademizadeh, H.;Moradi, M.
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.477-483
    • /
    • 2003
  • An independent kinematic hardening material model in which the reverse yielding point is defined by the Bauschinger effect factor (BEF) , has been defined for stainless steel SUS 304. The material model and the BEF are obtained experimentally and represented mathematically as continuous functions of effective plastic strain. The material model has been incorporated in a non-linear stress analysis for the prediction of reverse yielding in thick-walled cylinders during the autofrettage process of these vessels. Residual stress distributions of the independent kinematic hardening material model at the onset of reverse yielding are compared with residual stresses of an isotropic hardening model showing the significant effect of the BEF on reverse yielding predictions. Critical pressures of direct and reverse yielding are obtained for the most commonly used cylinders and a range of permissible internal pressures for an efficient autofrettaged process is recommended.

Numerical modeling of soil nail walls considering Mohr Coulomb, hardening soil and hardening soil with small-strain stiffness effect models

  • Ardakani, Alireza;Bayat, Mahdi;Javanmard, Mehran
    • Geomechanics and Engineering
    • /
    • 제6권4호
    • /
    • pp.391-401
    • /
    • 2014
  • In an attempt to make a numerical modeling of the nailed walls with a view to assess the stability has been used. A convenient modeling which can provide answers to nearly situ conditions is of particular significance and can significantly reduce operating costs and avoid the risks arising from inefficient design. In the present study, a nailing system with a excavation depth of 8 meters has been modeled and observed by using the three constitutive behavioral methods; Mohr Coulomb (MC), hardening soil (HS) and hardening soil model with Small-Strain stiffness ensued from small strains (HSS). There is a little difference between factor of safety and the forces predicted by the three models. As extremely small lateral deformations exert effect on stability and the overall deformation of a system, the application of advanced soil model is essential. Likewise, behavioral models such as HS and HSS realize lower amounts of the heave of excavation bed and lateral deformation than MC model.

Spherical Indentation Testing에 의한 1Cr-1Mo-0.25V 강의 기계적 물성 평가 (Spherical Indentation Testing to Evaluate Mechanical Properties In 1Cr-1Mo-0.25V Steel)

  • 이종민;남영현;남승훈;이승석;이억섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.266-271
    • /
    • 2001
  • Spherical indentation technique was developed to evaluate the flow properties of metallic materials in carbon steel, stainless steel and alloys, etc. Through the spherical indentation test, differently degraded 1Cr-1Mo-0.25V steel's mechanical properties were observed and compared with conventional standard test data. The flow properties of 1Cr-1Mo-0.25V steels were estimated by analyzing the indentation load-depth curve. To characterize the flow property, we used material yield slope and constraint factor index rather than strain-hardening exponent because the variation of strain-hardening exponent was very little and the data showed irregularly. And the constraint factor's effect was small when the material yield slope was taken into account.

  • PDF