• Title/Summary/Keyword: strain demand

Search Result 158, Processing Time 0.025 seconds

Monitoring Biota in Giant Miscanthus Fields (거대억새 재배단지 조성에 따른 생물상 모니터링)

  • Kang, Ku;Hong, Seong-Gu;Ji, Kwang-Jae;Choi, June-Yeol;Lee, Hyo-HyeMi;Kim, Han-Joong;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.89-99
    • /
    • 2014
  • The cultivation of biomass crops is now global demand for decreasing emissions of carbon dioxide ($CO_2$) from fossil fuel. Miscanthus species have been studied as a suitable crop for biomass production, due to its characteristics of fast growth and high biomass. In Korea, Miscanthus species have gained wide attention as an option for biomass production alternative to fossil fuels, recently. New strain of giant Miscanthus has been developed and two large trial sites for the giant Miscanthus production were built in the lower reaches of the Geum River. To evaluate the ecological influence of the giant Miscanthus as an bioenergy crop for the future, we investigated the impact of the construction of the giant Miscanthus production fields on the biota and also compared it with biota in paddy fields near the study sites. The biota including plants, amphibians, reptiles, mammals, avifauna, insects, and bugs was investigated. The plant diversity of the giant Miscanthus production fields was poorer than the paddy fields because the high height of the giant Miscanthus might hinder the growth of other plants. However, the giant Miscanthus production fields serves habitat to animals, leading to rich diversity of animals including avifauna, insects, and bugs. The rich diversity of the animals in the giant Miscanthus production fields coincides with the fact that the giant Miscanthus was grown without any pesticide, herbicide, and fertilizer. This study showed that the giant Miscanthus can influence on biota and further long term study is needed to elucidate the interaction between the diversity of biota and the giant Miscanthus.

Taxonomic Characterization, Evaluation of Toxigenicity, and Saccharification Capability of Aspergillus Section Flavi Isolates from Korean Traditional Wheat-Based Fermentation Starter Nuruk

  • Bal, Jyotiranjan;Yun, Suk-Hyun;Chun, Jeesun;Kim, Beom-Tae;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.44 no.3
    • /
    • pp.155-161
    • /
    • 2016
  • The most economically important species used in a wide range of fermentation industries throughout Asia belong to Aspergillus section Flavi, which are morphologically and phylogenetically indistinguishable, with a few being toxigenic and therefore a major concern. They are frequently isolated from Korean fermentation starters, such as nuruk and meju. The growing popularity of traditional Korean alcoholic beverages has led to a demand for their quality enhancement, therefore requiring selection of efficient non-toxigenic strains to assist effective fermentation. This study was performed to classify the most efficient strains of Aspergillus section Flavi isolated from various types of traditional wheat nuruk, based on a polyphasic approach involving molecular and biochemical evaluation. A total of 69 strains were isolated based on colony morphology and identified as Aspergillus oryzae/flavus based on internal transcribed spacer and calmodulin gene sequencing. Interestingly, none were toxigenic based on PCR amplification of intergenic regions of the aflatoxin cluster genes norB-cypA and the absence of aflatoxin in the culture supernatants by thin-layer chromatography analysis. Saccharification capability of the isolates, assessed through ${\alpha}-amylase$ and glucoamylase activities, revealed that two isolates, TNA24 and TNA15, showed the highest levels of activity. Although the degrees of variation in ${\alpha}-amylase$ and glucoamylase activities among the isolates were higher, there were only slight differences in acid protease activity among the isolates with two, TNA28 and TNA36, showing the highest activities. Furthermore, statistical analyses showed that ${\alpha}-amylase$ activity was positively correlated with glucoamylase activity (p < 0.001), and therefore screening for either was sufficient to predict the saccharifying capacity of the Aspergillus strain.

Seismic Performance of High-rise Concrete Buildings in Chile

  • Lagos, Rene;Kupfer, Marianne;Lindenberg, Jorge;Bonelli, Patricio;Saragoni, Rodolfo;Guendelman, Tomas;Massone, Leonardo;Boroschek, Ruben;Yanez, Fernando
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.181-194
    • /
    • 2012
  • Chile is characterized by the largest seismicity in the world which produces strong earthquakes every $83{\pm}9years$ in the Central part of Chile, where it is located Santiago, the capital of Chile. The short interval between large earthquakes magnitude 8.5 has conditioned the Chilean seismic design practice to achieve almost operational performance level, despite the fact that the Chilean Code declares a scope of life safe performance level. Several Indexes have been widely used throughout the years in Chile to evaluate the structural characteristics of concrete buildings, with the intent to find a correlation between general structural conception and successful seismic performance. The Indexes presented are related only to global response of buildings under earthquake loads and not to the behavior or design of individual elements. A correlation between displacement demand and seismic structural damage is presented, using the index $H_o/T$ and the concrete compressive strain ${\varepsilon}_c$. Also the Chilean seismic design codes pre and post 2010 Maule earthquake are reviewed and the practice in seismic design vs Performance Based Design is presented. Performance Based Design procedures are not included in the Chilean seismic design code for buildings, nevertheless the earthquake experience has shown that the response of the Chilean buildings has been close to operational. This can be attributed to the fact that the drift of most engineered buildings designed in accordance with the Chilean practice falls below 0.5%. It is also known by experience that for frequent and even occasional earthquakes, buildings responded elastically and thus with "fully operational" performance. Taking the above into account, it can be said that, although the "basic objective" of the Chilean code is similar to the SEAOC VISION2000 criteria, the actual performance for normal buildings is closer to the "Essential/Hazardous objective".

Work-related Musculoskeletal Disorders and Psychosocial Factors (작업관련성 근골격계질환과 사회심리적 요인)

  • Kim, In-Ah;Bae, Kyu-Jung;Kwon, Soon-Chan;Song, Jae-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.465-471
    • /
    • 2010
  • Work-related musculoskeletal disorders (WMSDs) have been the most common health problem covered by worker's accident compensation insurance for several years in Korea. Korean government has strengthened related regulations since 2003. People looked forward to decreasing the incidence and prevalence of WMSDs. At first, the expectation could be realized. However, we were bumped against to limit at present. The authors think it is due to the negligence of psychosocial factors for WMSDs. Many researchers reported that the various psychosocial factors were associated with WMSDs or symptoms. Job demand, social support, job satisfaction and decision latitude are the major risk factors in job stress aspect. Work pressure, lack of rest, qualified workload, workload variability and monotonous job are the significant risk factors in work context of work organization. Employment flexibility, downsizing, lean production, contingent work and pay for by the piece are also the risk factors in an organizational context. Furthermore, these risk factors are associated with each other across different dimensions of work organization. Suggestive possible pathways between these risks and WMSDs have been taken note of increasing muscle strain or ergonomic stress and of a cognitive aspect. The authors suggest these risk factors could explain the limitation of the regulation system for WMSDs. In conclusion, the strategy to manage psychosocial factors is the one of the essential approach to prevent WMSDs.

Induction of the T7 Promoter Using Lactose for Production of Recombinant Plasminogen Kringle 1-3 in Escherichia coli

  • Lim, Hyung-Kwon;Lee, Shi-Uk;Chung, Soo-Il;Jung, Kyung-Hwan;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.225-230
    • /
    • 2004
  • A plasminogen kringle domain 1 to 3, rKl-3, was expressed in Escherichia coli under the control of T7 promoter. For the cost-effective production of rKl-3, the induction process was analyzed and optimized. Induction characteristics with lactose were analyzed in terms of induction time and inducer concentration in various culture conditions including batch and high-cell-density fed-batch cultures. In the fed-batch culture, the induction around 6 h after initiation of the DO-stat fed-batch culture resulted in the highest expression level of rKI-3 among the induction points examined. The highest demand of oxygen at this point was crucial for the maximum expression level of rKI-3. As the lactose concentration increased, the expression level also increased, though the expression level showed a plateau above a concentration of 14 mM of lactose. Lactose acted less specifically than IPTG since most of it was hydrolyzed to glucose and galactose. However, using lactose, the cell growth and the maximum expression level of rKl-3 increased by 20% and 24%, respectively, compared with those using IPTG in the fed-batch culture. The lactose seemed to be hydrolyzed by intracellular and extracellular $\beta$-galactosidase liberated by cell lysis at the same time. Residual concentration of glucose was maintained to a a limit of detection by high performance liquid chromatography, and galactose was not consumed by the host strain Escherichia coli BL2l(DE3).

Investigation of the Central Carbon Metabolism of Sorangium cellulosum: Metabolic Network Reconstruction and Quantification of Pathway Fluxes

  • Bolten, Christoph J.;Heinzle, Elmar;Muller, Rolf;Wittmann, Christoph
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.23-36
    • /
    • 2009
  • In the present work, the metabolic network of primary metabolism of the slow-growing myxobacterium Sorangium cellulosum was reconstructed from the annotated genome sequence of the type strain So ce56. During growth on glucose as the carbon source and asparagine as the nitrogen source, So ce56 showed a very low growth rate of $0.23\;d^{-1}$, equivalent to a doubling time of 3 days. Based on a complete stoichiometric and isotopomer model of the central metabolism, $^{13}C$ metabolic flux analysis was carried out for growth with glucose as carbon and asparagine as nitrogen sources. Normalized to the uptake flux for glucose (100%), cells recruited glycolysis (51%) and the pentose phosphate pathway (48%) as major catabolic pathways. The Entner-Doudoroff pathway and glyoxylate shunt were not active. A high flux through the TCA cycle (118%) enabled a strong formation of ATP, but cells revealed a rather low yield for biomass. Inspection of fluxes linked to energy metabolism revealed that S. cellulosum utilized only 10% of the ATP formed for growth, whereas 90% is required for maintenance. This explains the apparent discrepancy between the relatively low biomass yield and the high flux through the energy-delivering TCA cycle. The total flux of NADPH supply (216%) was higher than the demand for anabolism (156%), indicating additional reactions for balancing of NADPH. The cells further exhibited a highly active metabolic cycle, interconverting $C_3$ and $C_4$ metabolites of glycolysis and the TCA cycle. The present work provides the first insight into fluxes of the primary metabolism of myxobacteria, especially for future investigation on the supply of cofactors, building blocks, and energy in myxobacteria, producing natural compounds of biotechnological interest.

Characterization of Newly Bred Cordyceps militaris Strains for Higher Production of Cordycepin through HPLC and URP-PCR Analysis

  • Lee, Hyun-Hee;Kang, Naru;Park, Inmyoung;Park, Jungwook;Kim, Inyoung;Kim, Jieun;Kim, Namgyu;Lee, Jae-Yun;Seo, Young-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1223-1232
    • /
    • 2017
  • Cordyceps militaris, a member of Ascomycota, a mushroom referred to as caterpillar Dong-chung-ha-cho, is commercially valuable because of its high content of bioactive substances, including cordycepin, and its potential for artificial cultivation. Cordycepin (3'-deoxyadenosine) is highly associated with the pharmacological effects of C. militaris. C. militaris is heterothallic in that two mating-type loci, idiomorph MAT1-1 and MAT1-2, exist discretely in two different spores. In this study, nine C. militaris strains were mated with each other to prepare newly bred strains that produced a larger amount of cordycepin than the parent strains. Nine strains of C. militaris were identified by comparing the internal transcribed spacer sequence, and a total of 12 single spores were isolated from the nine strains of C. militaris. After the MAT idiomorph was confirmed by PCR, 36 mating combinations were performed with six single spores with MAT1-1 and the others with MAT1-2. Eight mating combinations were successfully mated, producing stroma with perithecia. Cordycepin content analysis of all strains by high-performance liquid chromatography revealed that the KASP4-bred strain produced the maximum cordycepin among all strains, regardless of the medium and stroma parts. Finally, universal rice primer-PCR was performed to demonstrate that the bred strains were genetically different from the parental strains and new C. militaris strains. These results may be related to the recombination of genes during mating. The newly produced strains can be used to meet the industrial demand for cordycepin. In addition, breeding through mating suggests the possibility of producing numerous cordycepin-producing C. militaris strains.

Strain-Based Shear Strength Model for fiber Reinforced Concrete Beams (섬유보강 콘크리트 보를 위한 변형 기반 전단강도모델)

  • Choi Kyoung-Kyu;Park Hong-Gun;Wight James K.
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.911-922
    • /
    • 2005
  • A theoretical study was performed to investigate the behavioral chracteristics and shear strength of fiber reinforced concrete slender beams. In the fiber reinforced concrete beam, the shear force applied to a cross section of the beam was resisted by both compressive zone and tensile zone. The shear capacity of the compressive zone was defined addressing the interaction with the normal stresses developed by the flexural moment in the cross section. The shear capacity of the tensile zone was defined addressing the post-cracking tensile strength of fiber reinforced concrete. Since the magnitude and distribution of the normal stresses vary according to the flexural deformation of the beam, the shear capacity of the beam was defined as a function of the flexural deformation of the beam. The shear strength of the beam and the location of the critical section were determined at the intersection between the shear capacity and shear demand curves. The proposed method was developed as a unified shear design method which is applicable to conventional reinforced concrete as well as fiber reinforced concrete.

Ductility Confinement of RC Rectangular Shear Wall (장방형 철근 콘크리트 전단벽의 연성 보강)

  • 강수민;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.530-539
    • /
    • 2002
  • In designing the boundary confinement of shear walls, the current design provisions and recommendations are empirical and prescriptive; they specify a certain confinement length and details, regardless of the actual requirement of ductility Therefore, they are inappropriate to the performance based-design. The purpose of the present study is to develop a ductility design method that Is applicable to the performance based-design of shear wall. For the purpose, experimental studies were performed to investigate variations in the ductility of shear walls with the length of the boundary confinement. Five specimens modeling the compressive zone of cross sections with different confinement area were tested against eccentric vertical load. Through the experimental studies, strength, ductility, and failure mode of the compression zone were investigated. In addition, nonlinear numerical analyses for the overall cross-sections of shear wall were performed to investigate variations of the stress and strain profiles with the length of compression zone. On the basis of the experimental and numerical studies, a ductility design method for shear wall was developed. By using the proposed design method, for a given ductility demand, the area of lateral confinement and corresponding reinforcement ratio can be precisely determined so that the ductile behavior and economical design are assured.

An Experimental Study on the Durability of High-Ductile Mortar (고인성 모르타르의 내구특성에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Kim, Ju-Sang;Hwang, Nam-Soon;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.71-74
    • /
    • 2007
  • With the changes of times the building materials tend to extend the demand for application under the special environment. Since high-ductile mortar is developed, the building materials show excellent performance like toughness, compression, tensile, and bending, etc. in the general concrete from the existing brittle point. And, recently they are widely used as repairing and reinforcing materials both at home and abroad because they are recognized as excellence like durability and fire-resistance. However, it is in a situation of creating problems in durability because it frequently happened deterioration of buildings that have already repaired and reinforced at a time when it requires reconstruction of recently deteriorated construction structure recently. Therefore, in this study improved with a more repair Material development and reinforcement of the second high-ductile mortar products for a variety of basic materials were presented want, research plans used include traditional repair materials and the newly developed PCM (polymer cement mortar) structural reinforcement type indicated that comparison. PCM analysis in order to present a rate depending on the types fiber 0, 1.2 and 2.0(%) at three levels and mixture water according to ratios of weight to Plain in the 2.0 and 1.85(kg) at two levels is set, the results were as follows. 1) This study has shown that PCM had excellent strain hardening behavior at the same time that the bending stress increased according to the fiber contents. 2) This study has shown that it had the durability performance due to the high substance transmission according to the fiber contents.

  • PDF