• Title/Summary/Keyword: strain coefficient

Search Result 603, Processing Time 0.023 seconds

Genetic Relationship between Seed size and Leaf Size in 66 $F_2$ Populations Derived from Mating of 12 Soybean Strains (대두 12 모본의 half diallel cross로부터 생성된 66 $F_2$ 분리집단에서의 종자크기와 잎 크기에 대한 관계)

  • 정종일
    • Journal of Life Science
    • /
    • v.8 no.4
    • /
    • pp.437-442
    • /
    • 1998
  • Seed and leaf size is the important morphological traits considered by plant breeder and is the important yield components in soybean. The objective of this research was to know the relationship between seed size and leaf size in 66 $F_2$ populations derived from half diallel mating system with 12 soybean strains, representing distinct seed and leaf size. The range of seed size for 12 parents used was 6.7 to 43.8 g/100 seed. Leaf width leaf length ranged 5.7 to 8.6 cm and 9.4 to 12.9 cm, respectively. Leaf width was highly correlated with leaf length with an R square of 0.754 in the $F_2$ generation. The $F_2$ regression` coefficient indicated that leaves were, on average 1.4 times greater length than in width . Leaf size (width) was highly correlated (r.0.91) with seed size (g/100 seed) in the $F_2$ generation with an R square of 0.833. Our results indicate postive correlation within seed and leaf size is common in $F_2$ segregating populations derived from crossing with soybean. The strong liner relationship we observed between leaf size and seed size in $F_2$ segragating population is useful in that in that indirect selection for a secondary character may be superior to direct selection for the primary character.

  • PDF

Prediction of Crack Pattern of Continuously Reinforced Concrete Track Induced by Temperature Change and Shrinkage of Concrete (온도 변화와 콘크리트 수축에 의한 연속철근 콘크리트궤도의 균열 발생 패턴 예측)

  • Bae, Sung Geun;Choi, Seongcheol;Jang, Seung Yup;Cha, Soo Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.270-280
    • /
    • 2014
  • In this study, to examine the causes of cracks in continuously reinforced concrete tracks (CRCTs) and the main factors affecting cracking, a field survey on the status of cracks and crack patterns in the Gyeong-bu high speed line was conducted, and the crack patterns of CRCT due to the temperature difference between the top of the slab (TCL) and the bottom of the subbase (HSB) and the drying shrinkage of concrete were predicted by a nonlinear finite element model considering the structure of CRCT. The results of the numerical analysis show that cracks will be developed at the interface between the sleeper and the TCL, and under the sleeper due to the temperature difference and concrete shrinkage. This corresponds well to the crack locations found in the field. Also, it is found that the most significant factors are the coefficient of thermal expansion with respect to the temperature difference, and the drying shrinkage strain with respect to shrinkage. According to the results, the reinforcement ratio should be carefully determined considering the structures of CRCT because the crack spacing is not always proportional to the reinforcement ratio due to the sleepers embedded in the TCL.

Effect of Temperature and Compressive Stress on the Dielectric and Piezoelectric Properties of PIN-PMN-PT Single Crystal (온도 및 압축응력 변화에 따른 PIN-PMN-PT 단결정의 유전 및 압전 특성)

  • Lim, Jae Gwang;Park, Jae Hwan;Lee, Jeongho;Lee, Sang Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.63-68
    • /
    • 2019
  • Dielectric and piezoelectric properties of PIN-PMN-PT piezoelectric single crystals with variation of temperature and compressive stress were investigated. The crystal phase of the single crystal was changed from the ferroelectric rhombohedral structure to tetragonal structure in the 110℃ region and from the tetragonal structure to the paraelectric cubic structure in the 190℃ region. The piezoelectric constant and relative dielectric constant were calculated from the rate of change of polarization and displacement with the application of electric field, which was similar to the value measured from the instrument. As the compressive stress applied to the sample increased, the piezoelectric constant d33 and relative dielectric constant values tended to increase. When the compressive stress applied to the sample at 5℃ was 60 MPa, the d33 was calculated as 4,500 pC/N. At 60℃, the relative dielectric constant of 62000 was calculated when the compressive stress applied to the sample was 40 MPa. The increase in piezoelectric constant and relative dielectric constant when the compressive stress increased could be attributed to the phase transition from the rhombohedral structure to orthorhombic.

Efficient Adaptive Finite Element Mesh Generation for Dynamics (동적 문제에 효율적인 적응적 유한요소망)

  • Yoon, Chongyul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.385-392
    • /
    • 2013
  • The finite element method has become the most widely used method of structural analysis and recently, the method has often been applied to complex dynamic and nonlinear structural analyses problems. Even for these complex problems, where the responses are hard to predict, finite element analyses yield reliable results if appropriate element types and meshes are used. However, the dynamic and nonlinear behaviors of a structure often include large deformations in various portions of the structure and if the same mesh is used throughout the analysis, some elements may deform to shapes beyond the reliable limits; thus dynamically adapting finite element meshes are needed in order for the finite element analyses to be accurate. In addition, to satisfy the users requirement of quick real run time of finite element programs, the algorithms must be computationally efficient. This paper presents an adaptive finite element mesh generation scheme for dynamic analyses of structures that may adapt at each time step. Representative strain values are used for error estimates and combinations of the h-method(node movement) and the r-method(element division) are used for mesh refinements. A coefficient that depends on the shape of an element is used to limit overly distorted elements. A simple frame example shows the accuracy and computational efficiency of the scheme. The aim of the study is to outline the adaptive scheme and to demonstrate the potential use in general finite element analyses of dynamic and nonlinear structural problems commonly encountered.

Interfacial disruption effect on multilayer-films/GaN : Comparative study of Pd/Ni and Ni/Pd films

  • 김종호;강희재;김차연;전용석;서재명
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.113-113
    • /
    • 2000
  • 직접천이형 wide band gap(3.4eV) 반도체중의 하나인 GaN를 청색 및 자외선 laser diode, 고출력 전자장비 등으로 응용하기 위해서는 낮은 접합저항을 갖는 Ohmic contact이 선행되어야 한다. 그러나 만족할만한 p-type GaN의 Ohmic contact은 아직 실현되고 있지 못하며, 이는 GaN와 접합 금속과의 구체적인 반응의 연구를 필요로 한다. 본 연구에서 앞서 Pt, Pt, Ni등의 late transition metal을 p-GaN에 접합시킨 결과 이들은 접합 당시 비교적 평탄하나 후열 처리과정에서 비교적 낮은 온도에서 기판과 열팽창계수의 차이로 인하여 평탄성을 잃어버리면서 barrier height가 증가한다는 사실을 확인하였다. 따라서 본 연구에서는 이러한 열적 불안정성을 극복하기 위하여 Ni과 Pd를 차례로 증착하고 가열하면서 interfacial reaction, film morphology, Fermi level의 움직임을 monchromatic XPS(x-ray photoelectron spectroscopy) 와 SAM(scanning Auger microscopy) 그리고 ex-situ AFM을 이용하여 밝히고자 하였다. 특히 후열처리에 의한 계면 반응에 수반되는 구성 금속원소 간의 합금현상과 금속 층의 평탄성이 밀접한 관계가 있다는 것을 확인하였다. 이러한 합금과정에서 나타나는 금속원소들의 중심 준위의 이동을 체계적으로 규명하기 위해서 Pd1-xNix와 Pd1-xGax 합금들의 표준시료를 arc melting method로 만들어 농도에 따른 금속원소들의 중심 준위의 이동을 측정하여, Pd/Ni/p-GaN 및 Ni/Pd/p-GaN 계에서 열처리 온도에 따른 interfacial reaction을 확인하였다. 그 결과 두 계가 상온에서 nitride 및 alloy를 형성하지 않고 고르게 증착되고, 열처리 온도를 40$0^{\circ}C$에서 $650^{\circ}C$까지 증가시킴에 따라 계면반응의 부산물인 metallic Ga은 증가하고 있으마 nitride는 여전히 형성되지 않는 것을 확인하였다. 증착당시 Ni이 계면에 있는 Pd/Ni/p-GaN의 경우에는 52$0^{\circ}C$까지의 열처리에 의하여 Ni과 Pd가 골고루 섞이고 그 평탄성도 유지되고 barier height의 변화도 없었다. 더 높은 $650^{\circ}C$ 가열에 의해서는 surface free energy가 작은 Ga의 활발한 편석 현상으로 인해 표면은 Ga이 풍부한 Pd-Ga의 합금층으로 덮이고, 동시에 작은 pinhole들이 발생하며 barrier height도 0.3eV 가량 증가하게 된다. 반면에 증착당시 Pd이 계면에 있는 Ni/Pd/p-GaN의 경우에는 40$0^{\circ}C$의 가열까지는 두 금속이 그들 계면에서부터 섞이나, 52$0^{\circ}C$의 가열에 의해 이미 barrier height가 0.2eV 가량 증가하기 시작하였다. 더 높은 $650^{\circ}C$가열에 의해서는 커다란 pinhole, 0.5eV 가량의 barrier height 증가, Pd clustering이 동시에 관찰되었다. 따라서 Ni과 Pd의 일함수는 물론 thermal expansion coefficient가 거의 같으며 surface free energy도 거의 일치한다는 점을 감안하면, 이렇게 뚜렷한 열적 안정성의 차이는 GaN와 contact metal과의 반응시작 온도(disruption onset temperature)의 차이에 기인함을 알 수 있었다. 즉 계면에서의 반응에 의해 편석되는 Ga에 의해 박막의 strain이 이완되면, pinhole 등의 박막결함이 줄어 들고, 이는 계면의 N의 out-diffusion을 방지하여 p-type GaN의 barrier height 증가를 막게 된다.

  • PDF

The Fire Resistant Performance of RC Column with Confined Lateral Reinforcement According to Fire Exposure Condition (횡방향 철근으로 구속된 철근콘크리트 기둥의 화재 노출조건에 따른 내화성능)

  • Choi, Kwang Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • When reinforced concrete structures are exposed to fire, their mechanical properties such as compressive strength, elasticity coefficient and rebar yield strength, are degraded. Therefore, the structure's damage assessment is essential in determining whether to dismantle or augment the structure after a fire. In this study, the confinement effect of lateral reinforcement of RC column according to the numbers of fire exposure face and stirrup was verified by fire resistant test with the heating temperatures of $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$. The test results showed that the peak stress decreases and peak strain increases as the temperature is getting higher, also transverse ties are helpful in improving the compressive resistance of concrete subjected to high temperature. Based on the results of this study, the residual stress of confined concrete under thermal damage is higher at the condition of more lateral reinforcement ratio and less fire exposure faces. The decreasing ratio of elastic modulus of more confined and less exposure faces from the relationship of load and displacement was also smaller than that of opposite conditions.

Determinations of P, S-Wave Velocities and Pore Water Pressure Buildup with B-value for Nearly Saturated Sands (비배수 조건에서 반복하중을 받는 사질토의 B값(간극수압계수)에 따른 P파, S파 속도 및 간극수압 측정)

  • Lee, Sei-Hyun;Choo, Yun-Wook;Youn, Jun-Ung;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.71-83
    • /
    • 2007
  • Liquefaction resistance depends strongly upon the degree of saturation, which is expressed in terms of the pore pressure coefficient, B. The B-value has been widely used to quantify the state of saturation of laboratory samples. However, it is practically impossible to determine in situ state of saturation by using the B-value. So, P-wave velocity can be alternatively used as a convenient index for evaluating the in situ state of saturation. In this paper, the Stokoe type torsional shear (TS) testing system was modified to saturate the specimen, with which it is also possible to measure P ($V_p$), S-wave velocity ($V_s$) and the excess pore water pressure buildup In order to examine the effect of B-value for nearly saturated sands. A series of the tests were carried out at 3 relative densities (40%, 50% and 75%) and various B-values using Toyoura sand. Based on the test results, the variations of $V_p\;and\;V_s$ with B-value were analyzed and compared with a existing theoretically derived formula. The normalized pore water pressure, $du/{\sigma}{_0}'$ and cyclic threshold shear strain, ${\gamma}^c_{th}$ with B-value were also analyzed. Additionally the test results related to pore water pressure were analyzed by $V_p$ to apply to the field seismic analysis.

Comparison of Stress Response in Diallel Crossed Korean Domestic Chicken Breeds (토종 종계를 이용한 이면 교배조합 계통 간 스트레스 반응정도 비교 분석)

  • Cho, Eun Jung;Park, Ji Ae;Choi, Eun Sik;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.43 no.2
    • /
    • pp.77-88
    • /
    • 2016
  • To establish a new synthetic Korean meat chicken breed, we tested $5{\times}5$ diallel cross mating experiment with domestic chicken breeds. Comparing stress responses among diallel crossed chicken breeds, we analyzed telomere length, DNA damage and expressions of heat shock protein genes (HSPs) as the markers of the stress response. The telomere length was measured by quantitative fluorescence in situ hybridization on the nuclei of lymphocytes. The expression levels of HSP-70, $HSP-90{\alpha}$ and $HSP-90{\beta}$ genes were analyzed by quantitative real-time polymerase chain reaction in lymphocytes. The DNA damage rate of lymphocytes was quantified by the comet assay known as the single cell gel electrophoresis. In results, there were significant differences in the values of the stress markers such as telomere length, HSPs and DNA damage rate, and also were significant differences in viabilities and body weights among the $5{\times}5$ diallel crossed chicken breeds. The telomere shortening rate, expression values of HSPs and DNA damage rate were significant low in W and Y crossed chickens compare to the others, but GG pure breed showed the highest values in the 25 crossed chickens. Estimating correlation coefficient, the survival rate positively correlated to telomere length, but negatively correlated to the expression levels of HSP-70, $HSP-90{\alpha}$, $HSP-90{\beta}$ genes and to the value of % DNA in tail as DNA damage rate. The expression levels of HSP-70, $HSP-90{\alpha}$ and $HSP-90{\beta}$ genes of dead chickens had significantly higher than those of survival chickens. According to the results on the stress marker analysis, it would be considered that the crossed breeds had more stress resistant than the pure breeds, and the crossed chickens with a light strain such as W or Y were relatively resistant to stress, but the crossed chickens with a heavy strain such as G, H, F were susceptible to stress.

Effects of Boliing, Steaming, and Chemical Treatment on Solid Wood Bending of Quercus acutissima Carr. and Pinus densiflora S. et. Z. (자비(煮沸), 증자(蒸煮) 및 약제처리(藥劑處理)가 상수리나무와 소나무의 휨가공성(加工性)에 미치는 영향(影響))

  • So, Won-Tek
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.19-62
    • /
    • 1985
  • This study was performed to investigate: (i) the bending processing properties of silk worm oak (Quercus acutissima Carr.) and Korean red pine (Pinus densiflora S. et Z.) by boiling and steaming treatments; (ii) the effects of interrelated factors - sapwood and heartwood, annual ring placement, softening temperature and time, moisture content. and wood defects on bending processing properties; (iii) the changing rates of bending radii after release from a tension strap, and (iv) the improving methods of bending process by treatment with chemicals. The size of specimens tested was $15{\times}15{\times}350mm$ for boiling and steaming treatments and $5{\times}10{\times}200mm$ for treatments with chemicals. The specimens were green for boiling treatments and dried to 15 percent for steaming treatments. The specimens for treatments with chemicals were soaked in saturated urea solution, 35 percent formaldehyde solution, 25 percent polyethylene glycol -400 solution, and 25 percent ammonium hydroxide solution for 5 days and immediately followed the bending process, respectively. The results obtained were as follows: 1. The internal temperature of silk worm oak and Korean red pine by boiling and steaming time was raised slowly to $30^{\circ}C$ but rapidly from $30^{\circ}C$ to $80-90^{\circ}C$ and then slowly from $80-90^{\circ}C$ to $100^{\circ}C$. 2. The softening time required to the final temperature was directly proportional to the thickness of specimen. The time required from $25^{\circ}C$ to $100^{\circ}C$ for 15mm-squared specimen was 9.6-11.2 minutes in silk worm oak and 7.6-8.1 minutes in Korean red pine. 3. The moisture content (M.C.) of specimen by steaming time was increased rapidly first 4 minutes in the both species, and moderately from 4 to 20 minutes and then slowly and constantly in silk worm oak, and moderately from 4 to 15 minutes and then slowly and constantly in Korean red pine. The M.C. of 15mm-squared specimen in 50 minutes of steaming was increased to 18.0 percent in the oak and 22.4 percent in the pine from the initial conditioned M.C. of 15 percent The rate of moisture adsorption measured was therefore faster in the pine than in the oak. 4. The mechanical properties of the both species were decreased significantly with the increase of boiling rime. The decrement by the boiling treatment for 60 minutes was measured to 36.6-45.0 percent in compressive strength, 12.5-17.5 percent in tensile strength, 31.6-40.9 percent in modulus of rupture, and 23.3-34.6 percent in modulus of elasticity. 5. The minimum bending radius (M.B.R.) of sapwood and heartwood was 60-80 mm and 90 mm in silk worm oak, and 260 - 300 mm and 280 - 300 mm in Korean red pine, respectively. Therefore, the both species showed better bending processing properties in sapwood than in heartwood. 6. The M.B.R. of edge-grained and flat-grained specimen in suk worm oak was 60-80 mm, but the M.B.R. in Korean red pine was 240-280 mm and 260-360 mm, respectively. Comparing the M.B.R. of edge-grained with flat-grained specimen, in the pine the edge-grained showed better bending processing property than the flat-grained. 7. The bending processing properties of the both species were improved by the rising of softening temperature from $40^{\circ}C$ to $100^{\circ}C$. The minimum softening temperature for bending was $90^{\circ}C$ in silk worm oak and $80^{\circ}C$ in Korean red pine, and the dependency of softening temperature for bending was therefore higher in the oak than in the pine. 8. The bending processing properties of the both species were improved by the increase of softening time as well as temperature, but even after the internal temperature of specimen reaching to the final temperature, somewhat prolonged softening was required to obtain the best plastic conditions. The minimum softening time for bending of 15 mm-squared silk worm oak and Korean red pine specimen was 15 and 10 minutes in the boiling treatment, and 30 and 20 minutes in the steaming treatment, respectively. 9. The optimum M.C. for bending of silk worm oak was 20 percent, and the M.C. above fiber saturation point rather degraded the bending processing property, whereas the optimum M.C. of Korean red pine needed to be above 30 percent. 10. The bending works in the optimum conditions obtained as seen in Table 24 showed that the M.B.R. of silk worm oak and Korean red pine was 80 mm and 240 mm in the boiling treatment, and 50 mm and 280 mm in the steaming treatment, respectively. Therefore, the bending processing property of the oak was better in the steaming than in the boiling treatment, but that of the pine better in the boiling than in the steaming treatment. 11. In the bending without a tension strap, the radio r/t of the minimum bending radius t to the thickness t of silk worm oak and Korean red pine specimen amounted to 16.0 and 21.3 in the boiling treatment, and 17.3 and 24.0 in the steaming treatment, respectively. But in the bending with a tension strap, the r/t of the oak and the pine specimen decreased to 5.3 and 16.0 in t he boiling treatment, and 3.3 and 18.7 in the steaming treatment, respectively. Therefore, the bending processing properties of the both species were significantly improved by the strap. 12. The effect of pin knot on the degradation of bending processing property was very severe in silk worm oak by side, e.g. 90 percent of the oak specimens with pin knot on the concave side were ruptured when bent to a 100 mm radius but only 10 percent of the other specimens with pin knot on the convex side were ruptured. 13. The changing rate in the bending radius of specimen bent to a 300 mm radius after 30 days of exposure to room temperature conditions was measured to 4.0-10.3 percent in the boiling treatment and 13,0-15.0 percent in the steaming treatment. Therefore, the degree of spring back after release was higher in the steaming than in the boiling treatment. And the changing rate of moisture-proofing treated specimen by expoxy resin coating was only -1.0.0 percent. 14. Formaldehyde, 35 percent solution, and 25 percent polyethylene glycol-400 solution found no effect on the plasticization of the both species, but saturated urea solution and 25 percent ammonium hydroxide solution found significant effect in comparison to non-treated specimen. But the effect of the treatment with chemicals alone was inferior to that of the steaming treatment, and the steaming treatment after the treatment with chemicals improved 10-24 percent over the bending processing property of steam-bent specimen. 15. Three plasticity coefficients - load-strain coefficient, strain coefficient, and energy coefficient - were evaluated to be appropriate for the index of bending processing property because the coefficients had highly significant correlation with the bending radius. The fitness of the coefficients as the index was good at load-strain coefficient, energy coefficient, and strain coefficient, in order.

  • PDF

Production of Concentrated Blueberry Vinegar Using Blueberry Juice and Its Antioxidant and Antimicrobial Activities (블루베리 농축식초 제조 및 이들의 항산화 및 항균 활성)

  • Oh, Hyeonhwa;Jang, Sowon;Jun, Hyun-Il;Jeong, Do-Youn;Kim, Young-Soo;Song, Geun-Seoup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.695-702
    • /
    • 2017
  • This study was carried out to investigate the effects of seed vinegar on antioxidant activity and antimicrobial activities of concentrated blueberry vinegar (CBV). Of the nine strains of yeast and six strains of acetic acid bacteria provided by the Microbial Institute for Fermentation Industry, each strain of yeast (Saccharomyces cerevisiae SRCM 100610, showing the highest ethanol content) and acetic acid bacteria (Acetobacter pasteurianus SRCM 101342, showing the highest total acidity) was selected for production of CBVs. Sugar content, pH, total acidity, total phenolic content (TPC), and browning intensity (280 nm and 420 nm) in CBVs using concentrated blueberry juice were $11.05{\sim}12.70^{\circ}Brix$, 2.63~2.98, 1.65~5.72%, 3.03~4.24 mg/mL, 0.95~1.50, and 0.11~0.20, respectively. Sugar content and total acidity of CBVs increased upon addition of seed vinegar, whereas pH, TPC, and browning intensity decreased. Of all CBVs with various additions of seed vinegar, the control showed the lowest $EC_{50}$ values in DPPH radical scavenging assay, ABTS radical scavenging assay, and reducing power (23.80, 19.48, and 79.21 dilution factor, respectively), whereas the 40% seed vinegar group showed the highest clear zone diameter values for Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus (4.31, 4.59, 5.81, and 3.97, respectively). Antioxidant activities of CBVs were closely correlated with their TPC, browning intensity at 280 nm, pH, and total acidity values, showing correlation determination coefficient ($R^2$) values higher 0.82. However, antimicrobial activities of CBVs were closely correlated with their pH and total acidity values, showing higher $R^2$ values more than 0.92. These results suggest that CBVs using concentrated blueberry juice, S. cerevisiae SRCM 100610, and A. pasteurianus SRCM 101342 may be useful as potentially functional foods for enhancing health.