• 제목/요약/키워드: strain characterization and identification

검색결과 143건 처리시간 0.023초

카스텔란니가시아메바(Acanthamoeba castellanii) 한국 토양분리주 KA/S2의 생화학적 및 분자생물학적 특성 (Biochemical and molecular characterization of a strain KA/S2 of Acnnthamoebc castellanii isolated from Korean soil)

  • 정동일;공현희
    • Parasites, Hosts and Diseases
    • /
    • 제34권1호
    • /
    • pp.79-86
    • /
    • 1996
  • 형태적으로 Aconaqmoebcusteuon리로 동정된 한국토양분리주 KA/S2의 일부 특성을 파악하여 A. castellanii로 알려진 4가지 reference 주(Castellani, Neff, fna 및 Chang주) 와 비교하였다 K4/s2주의 mitochondria(Mt) DNARFLP와 isoelectricforusing(IEF)로 분석한 동위효소 양상은 California 토양에서 분리된 Neff주의 그것과 동일하였으나 고 외의 주들 사이에는 심한 다양성이 과찰되었다. Chang주의 형태 및 전 단백질 양상은 다른 주에 비해 독특하였다. Aconamoeba app. 분리주의 동정 및 특성 파악에 Mt DNA RFLP 분석이 매우 유용할을 확인하였다. Aconamoebacasteunil의 우리말 학명을 카스텔라니가시아메바로 제안한다.

  • PDF

의약용 프로바이오틱 비스판균의 미생물학적 동정 (Microbiological Identification of Medical Probiotic Bisspan Strain)

  • 전경동;이광호;김원석;백현동
    • 한국미생물·생명공학회지
    • /
    • 제28권2호
    • /
    • pp.124-127
    • /
    • 2000
  • Beneficial bacteria, which have been used for medical purpose and for medicines for treating intestinal disorders, include strains of Bifidobacterium sp., Lactobacillus sp., Enterococcus sp., Clostridium butyricum, Lactobacillus sporogenes, Bacillus subtilis, Bacillus polyfermenticus and the like. Bacillus polyfermenticuss SCD with is commonly called as Bispan strain has been appropriately used for the treatment of long-term intestinal disorders, since the live strains in the form of active endospores can successfully reach the target intestine. In this study, the identification and characterization of Bispan strain was done using SEM observation, API 50CHB kits, isoprenoid quinone analysis, and fatty acid analysis. These results suggest that Bispan strain is very similar to Bacillus subtilis.

  • PDF

Isolation, Identification and Characterization of a Antidementia Acetylcholinesterase Inhibitor-Producing $Yarrowia$ $lipolytica$ S-3

  • Kang, Min-Gu;Yoon, Min-Ho;Choi, Young-Jun;Lee, Jong-Soo
    • Mycobiology
    • /
    • 제40권1호
    • /
    • pp.42-46
    • /
    • 2012
  • This report describes the isolation and identification of a potent acetylcholinesterase (AChE) inhibitor-producing yeasts. Of 731 species of yeast strain, the S-3 strain was selected as a potent producer of AChE inhibitor. The selected S-3 strain was investigated for its microbiological characteristics. The S-3 strain was found to be short-oval yeast that did not form an ascospore. The strain formed a pseudomycelium and grew in yeast malt medium containing 50% glucose and 10% ethanol. Finally, the S-3 strain was identified by its physiological characteristics and 26S ribosomal DNA sequences as $Yarrowia$ $lipolytica$ S-3.

Cholesterol Oxidase를 생산하는 방선균분리주 HSL-613의 동정 (Identification of the Streptomyces Strain HSL-613 Producing Cholesterol Oxidase)

  • 이홍수;이인애;최용경;이희구;이근철;박용하;오태광;최인성;정태화
    • 한국미생물·생명공학회지
    • /
    • 제22권4호
    • /
    • pp.373-381
    • /
    • 1994
  • An actinomycete strain, HSL-613 was isolated -from soil and identified by International Streptomyces Project (ISP) and chemotaxonomic methods. The spore chain of the strain HSL-613 appears in a spiral shape, and its spores are spherical shape with smooth surface. The cell wall contains LL-diaminopimelic acid (DAP). Menaquinone MK-9 (H$_{6}$, H$_{8}$) and iso- and anteiso-branched fatty acids were detected from whole cell extract. Sugars identified from whole cell extract include galactose, glucose, mannose and ribose, which are distinct from general sugar patterns of Streptomyces. Average G+C content in the chromosome is 59%. 5S rRNA of HSL-613 consists of 120 nucleotides as determined by comparing with that of a type strain Streptomyces griseus subsp. KCTC 9080. Through morphological, physiological, and chemical characterization, HSL-613 was identified and named as Streptomyces sp. HSL-613.

  • PDF

Isolation and Characterization of Bacillus sp. Producing Broad-Spectrum Antibiotics Against Human and Plant Pathogenic Fungi

  • Chen, Na;Jin, Min;Qu, Hong-Mei;Chen, Zhi-Qiang;Chen, Zhao-Li;Qiu, Zhi-Gang;Wang, Xin-Wei;Li, Jun-Wen
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.256-263
    • /
    • 2012
  • A strain of bacterium producing antifungal antibiotic was isolated and identification of the strain was attempted. We could identify the bacterium as being a Bacillus sp., based on morphological observation, physiological characteristics, and 16S rDNA sequence analysis, thus leading us to designate the strain as Bacillus sp. AH-E-1. The strain showed potent antibiotic activity against phytopathogenic and human pathogenic fungi by inducing mycelial distortion and swelling and inhibiting spore germination. The antibiotic metabolite produced by the strain demonstrated excellent thermal and pH (2-11) stability, but was labile to autoclaving. From these results, we could find a broader antifungal activity of Bacillus genus. Isolation and characterization of the active agent produced by the strain are under progress.

사과 푸른곰팡이병의 길항미생물의 분리 및 동정 (Isolation and Identification of Antifungal Bacteria on Blue Mold in Apple)

  • 이인선;조정일
    • 한국식품위생안전성학회지
    • /
    • 제14권2호
    • /
    • pp.167-171
    • /
    • 1999
  • In order to screen the antagonistic bacteria which inhibit the growth of the apple pathogen, Penicillum expansum, we isolated an effective bacterial strain and investigated into the antifungal activity of the antagonist and it's identification. The eleven strains of bacteria which strongly inhibited P. expansum were isolated from the nature, and the best antagonistic bacterial strain designated as CH142, was selected. The antagonistic strain CH142 was identified to be the genus Bacillus subtilis based on morphological and biochemical characterization. The CH142 showed 55.9% of antifungal activity against the growth of P. expansum. By the treatment of the culture broth and the heat treated culture filtrate of it, the B. subtilis CH142 showed 90% and 15% of antifungal activity, respectively.

  • PDF

Characterization of Streptomyces sp. AMLK-135 Producing Anti- MRSA Antibiotics

  • Lee, Min-Jeong;Lim, Dae-Seog;Lee, Myung-Sub;Yoon, Won-Ho;Kim, Chang-Han
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권6호
    • /
    • pp.397-401
    • /
    • 1997
  • The present research program was conducted to characterize a strain of actinomycetes producing an anti methicillin-resistant Staphylococcus aureus (MRSA) antibiotic. Soil samples were collected from various sites in Korea and a number of actinomycetes were isolated from the soil samples by applying selective agar for actinomycetes. Among over 400 isolates, a strain (AMLK-135) producing anti-MRSA antibiotic against S. aureus TK 784 was selected. According to the morphological and physiological characteristics, the strain AMLK-135 was confirmed to belong to the genus Streptomyces. From the results of species identification with the TAXON program, the strain AMLK-135 was shown to belong to major cluster 5 (Streptomyces exfoliatus), but it had a low simple matching coefficient ($S_{SM}$ SM/) value to member organisms of major cluster 5. Percentage ($\%$) of strain further away of the strain AMLK-135 was low (1.9400) and it was placed further away than the outer-most members in major cluster 5. Therefore, the strain AMLK-135 was identified as a new species of the genus Streptomyces.

  • PDF

시판 까나리(Ammodytes personatus) 액젓에서 Putrescine 생성균의 분리 및 특성 (Isolation and Characterization of Putrescine-producing Bacteria in Commercially Available Sauces Made from Salted and Fermented Sand Lance Ammodytes personatus)

  • 엄인선;김태옥;박권삼
    • 한국수산과학회지
    • /
    • 제49권5호
    • /
    • pp.573-581
    • /
    • 2016
  • Bacterial decarboxylation of amino acids in food leads to the production of biogenic amines, which can cause reactions in human that include headaches, nausea, palpitations, chills, and severe respiratory distress. The amine putrescine is an especially effective inhibitor of metabolizing enzymes and amplifies histamine intoxication and tyramine poisoning. Using an L-ornithine decarboxylating medium, we isolated 14 putrescine-producing bacteria from sand lance, Ammodytes personatus, sauces. The isolates were identified, using an API kit and 16S rRNA analysis, as Lysinibacillus fusiformis (1 strain), Lysinibacillus xylanilyticus (6 strains), Lysinibacillus macroides (1 strain), Lysinibacillus sphaericus (3 strains), Bacillus fusiformis (1 strain), Paenibacillus favisporus (1 strain), and Staphylococcus caprae (1 strain). These strains produced between 1.66 to 236.97 μg/mL of putrescine after 48 h incubation. Lysinibacillus spp. were the dominant putrescine-producing bacteria in sand lance sauces, which produced 236.97 μg/mL of putrescine from a culture broth containing 0.5% L-ornithine. This is the first report on the isolation and identification of putrescine-producing bacteria from sand lance sauces.

Physiological and Molecular Characterization of a Newly Identified Entomopathogenic Bacteria, Photorhabdus temperata M1021

  • Jang, Eun-Kyung;Ullah, Ihsan;Lim, Jong-Hui;Lee, In-Jung;Kim, Jong-Guk;Shin, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1605-1612
    • /
    • 2012
  • The present study concerned the identification and characterization of a novel bacterial strain isolated from entomopathogenic nematodes collected from different regions in Korea. The bacterial isolate M1021 was Gramnegative, bioluminescent, and produced red colonies on MacConkey agar medium. A rod-shaped structure was confirmed by the electron micrograph. Fatty acid composition was analyzed by using the Sherlock MIDI system. The identification was further supported by 16S rDNA sequence analysis, which revealed 96-99% sequence homology with strains of Photorhabdus temperata. The location of the isolated strain of P. temperata in the phylogenetic tree was confirmed and it was named P. temperata M1021. P. temperata M1021 exhibited catalase, protease, and lipase activities when grown on appropriate media supplemented with respective substrates. The culture of P. temperata M1021 exhibited insecticidal activity against the larvae of Galleria mellonella and the activity was the highest after 3-4 days of cultivation with agitating at $28^{\circ}C$ under 220 rpm. Antibacterial activity was also observed against Salmonella Typhimurium KCTC 1926 and Micrococcus luteus KACC 10488.

Identification and Partial Characterization of Lacticin SA72, a Bacteriocin Produced by Lactococcus lactis SA72 Isolated from Jeot-gal

  • Koo, Kyoung-Mo;Lee, Na-Kyoung;Hwang, Young-Il;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.488-495
    • /
    • 2000
  • Strain SA72 was isolated from Jeot-gal and identified as producer of a bacteriocin, which showed some bactericidal activity against Lactobacillus delbrueckii ATCC 4797. Strain SA72 was tentatively identified as Lactococcus lactis according to the AOI test. Lactococcus lactis SA72 showed a broad spectrum of microorganisms, tested by the modified deferred method. The activity of lacticion SA72, named tentatively as a bacteriocin produced by Lactococcus lactis SA72, was detected during the mid-lon growth phase, reached a maximum during the early stationary phase, and then declined after the late stationary phase. Lacticin SA72 also showed a relatively broad spectrum of activity against non-pathogenic and pathogenic microorganisms when assessed by the spot-on-lawn method. Its anitimicrobial activity on sensitive indicator cells disappeared completely by protease XIV treatment. The inhibitory activity of lacticin SA72 remained after treatment for 15 min at $121^{\circ}C$, 문 was stable in a pH range of 2.0 to 9.0 and all organic solvents examined. It demonstrated a typical bactericidal mode of inhibition against Lactobacillus delbrueckii ATCC 4797. The apparent molecular mass of lacticin SA72 was in the region of 3-3.5 kDa, determined by SDS-PAGE.

  • PDF