• 제목/요약/키워드: straight duct

검색결과 63건 처리시간 0.022초

회전하는 정사각 직관내 난류유동 (Investigation of Turbulent Flow in Rotating Straight Square Duct)

  • 전건호;최영돈;김동철;최선용;임홍영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.766-771
    • /
    • 2001
  • An experimental study was undertaken to investigate the effect of coriolis force for the turbulent flow at low Reynolds numbers in a rotating straight square duct. The study was carried out using a hot-wire anemometer. The flow Reynolds number based on the hydraulic diameter ranged from 4,000 to 18,000 and Rotation number ranged from 0 to 0.196. At Re=9000, developing turbulent flow was calculated for mean velocity and Reynolds stress. Pressure coefficient and energy dissipation spectrum were also calculated.

  • PDF

다중 블록 격자를 이용한 원뿔 직관 모양의 벌류트 유동의 수치해석 (NUMERICAL SIMULATION ON A VOLUTE OF STRAIGHT CONICAL DUCT TYPE BY MULTI-BLOCK GRID)

  • 배황;강현구;윤주식;박기철;장근식
    • 한국전산유체공학회지
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2006
  • Numerical investigation of a centrifugal compressor volute having a modified straight conical duct hill been made. Three-dimensional Reynolds-Averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence equation are solved To avoid coordinate singularity at the central axis of the duct, multi-block H-type grid is generated on the circular cross-sections of the volute and stretched toward the solid wall boundary. We obtained numerical results with three different mass flow rates at the volute inlet, namely, with the inlet conditions that give small, medium and large mass flow rates at the outlet of the conical duct. Agreement with the experimental results is observed.

정사각 직관과 $180^{\circ}$ 곡관내 난류유동의 레이놀즈응력모형 적용 (Turbulent Flow through a Square Straight and Curved Duct with Reynolds Stress Models)

  • 전건호;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.771-776
    • /
    • 2000
  • Fine grid calculations are reported for the developing turbulent flow in a straight duct and a curved duct of square cross-section with a radius of curvature to hydraulic diameter ratio ${\delta}=R_c/H_H=3.357$ and a bend angle of 180 deg. A sequence of modeling refinements is introduced; the replacement of wall function by a fine mesh across the sublayer and a low Reynolds number second moment closure up to the near wall sublayer in which the non-linear return to isotropy model and the cubic-quasi-isotropy model for the pressure strain are adopted; and the introduction of a multiple source model for the exact dissipation rate equation. Each refinement is shown to lead to an appreciable improvement in the agreement between measurement and computation.

  • PDF

Numerical study of flow of Oldroyd-3-Constant fluids in a straight duct with square cross-section

  • Zhang, Mingkan;Shen, Xinrong;Ma, Jianfeng;Zhang, Benzhao
    • Korea-Australia Rheology Journal
    • /
    • 제19권2호
    • /
    • pp.67-73
    • /
    • 2007
  • A finite volume method (FVM) base on the SIMPLE algorithm as the pressure correction strategy and the traditional staggered mesh is used to investigate steady, fully developed flow of Oldroyd-3-constant fluids through a duct with square cross-section. Both effects of the two viscoelastic material parameters, We and ${\mu}$, on pattern and strength of the secondary flow are investigated. An amusing sixteen vortices pattern of the secondary flow, which has never been reported, is shown in the present work. The reason for the changes of the pattern and strength of the secondary flow is discussed carefully. We found that it is variation of second normal stress difference that causes the changes of the pattern and strength of the secondary flow.

직사각형단면을 갖는 $180^{\circ}$곡관에서의 강제 대류 열전달 특성에 관한 실험적 연구 (An Experimental Study on Forced Convective Heat Transfer in a Rectangular Duct with $180^{\circ}$ Bend)

  • 문찬;이건휘;최영돈
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.290-301
    • /
    • 1992
  • An experimental study has been performed to investigate the characteristics of forced convective heat transfer in a rectangular duct with a 180.deg. bend. The Nusselt number of outer wall has maximum value near 105.deg. at which secondary flow is most active and the Nusselt number of inner wall has maximum value near the inlet of a duct. Near the outlet of a duct, the Nusselt number of outer wall decreases, the Nusselt number of inner wall increases and so those access each other through the influence of a straight duct attached to the end of a duct with a 180.deg. bend. Results of this experimental study would be the fundamental data when streamline curvature correction models are developed in the numerical study for forced convective heat transfer in a curved duct.

주름진 덕트에서 딤플/돌출 형상이 열전달계수에 미치는 영향 (Effects of dimple/protrusion array on heat transfer coefficients in rectangular wavy duct)

  • 권현구;황상동;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2352-2356
    • /
    • 2008
  • Heat transfer and performance characteristics have been investigated for a rectangular wavy duct with dimple or protrusion arrays. The test duct was 15mm in height and 105mm wide. The print diameter of the dimple/protrusion wall was 12.99mm and the depth/height of the dimple/protrusion was 3.75mm. Local heat transfer coefficients on the dimple/protrusion wall were measured using a transient TLC technique. The Reynolds number was varied from 3,000 to 10,000. For the wavy duct tested in this study, adverse static pressure characteristics occurred at turning region of the wavy duct due to secondary flows. For the wavy duct with protrusion array, higher heat transfer enhancement level of 7.4 times than smooth straight case in maximum was obtained at low Reynolds number due to the high heat transfer enhancement by vortex flows. Also, the protrusion array increased the performance level of 3.0 at low Reynolds number of 3,000.

  • PDF

가진 펌프에 연결된 곡관 출구의 직관에서 난류진동유동의 속도분포와 전단응력분포 (Velocity Profile and Wall Shear Stress Distributions of Developing Turbulent Oscillatory Flows in an Oscillator Connected to Straight Duct Located in Exit Region of a Curved Duct)

  • 손현철;이행남;박길문
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1378-1386
    • /
    • 2002
  • In the present study, velocity profile and wall shear stress distributions of developing turbulent oscillatory flows in an oscillator connected to straight duct located in exit region of a curved duct was investigated experimentally. The experimental study for air flows was conducted to measure axial velocity profiles, shear stress distributions by using the Laser Doppler Velocimetry(LDV) system with the data acquisition and processing system of Rotating Machinery Resolver(R.M.R) and PHASE software. The results obtained from experimental studies are summarized as follows. The critical Reynolds number for a change from transitional oscillatory flow to turbulent flow was about 7500, in the 60region of dimensionless axial position which was considered as a fully developed flow region. The turbulent oscillatory flow, velocity profiles of the inflow period in the entrance region were gradually developed, but those of the outflow period were not changed nearly. Velocity profiles of inflow and outflow were shown as a symmetric form in a fully developed flow region. The wall shear stress distributions of turbulent oscillatory flow increase rapidly as the flow proceeds to downstream and flow was in good agreement with the theoretically.

정사각형 단면을 갖는 180° 곡관에서 위치별 속도분포특성 및 직관거리의 유효성에 관한 연구 (A Study on Velocity Distribution Characteristics for Each Location and Effectiveness of Straight Duct Length in a Square-sectional 180° Bended Duct)

  • 진정정;윤준규
    • 한국산학기술학회논문지
    • /
    • 제17권10호
    • /
    • pp.618-627
    • /
    • 2016
  • 본 연구는 정사각형 단면 $180^{\circ}$ 곡관 내의 유동특성을 파악하기 위해 RSM 난류모델을 이용하여 작동유체, 입구의 공기속도, 관내의 표면조도, 곡률반경 및 수력직경 등의 다양한 유동인자를 변경하여 각도 위치별 속도분포특성을 수치해석을 통하여 고찰하였다. CFD 해석시 경계조건은 공기와 물의 입구온도를 288 K, 293 K로 설정하였고, 입구의 공기속도, 관내의 표면조도, 곡률반경 및 수력직경은 각각 3~15 m/s, 0~0.001 mm, 2.5~4.5D, 70~100 mm로 적용하여 해석을 수행하였다. 그 결과를 정리하면, 작동유체의 유동특성은 유체의 점성력 차이로 속도분포가 크게 달라짐을 알 수 있었고, 곡관부 내에서의 최대 속도프로파일은 $90^{\circ}$ 단면위치에서 X/D=0.8 영역으로 나타났으며, $180^{\circ}$ 단면위치에서는 Y/D=0.8 영역으로 나타났다. 그리고 관내의 표면조도가 낮고, 곡률반경이 클수록 속도변화율은 크게 변하여 나타냈다. 또한 곡관후류의 직관부에서 유동편차가 안정화되는 직관거리는 L/D=30 영역에서 나타내어 유량 계측시 유효한 측정위치로 잘 제시할 수 있었으며, 수력직경에 따라 곡관후류 직관부의 표준편차특성은 동일한 유속일 때 최소의 편차영역은 대체로 직관거리 L/D=15~30 범위로 나타났다.

덕트형 항온챔버에서 히트펌프 실외기의 성능평가 가능성에 대한 CFD (CFD on the possibility of performance evaluation of heat pump outdoor unit in duct-type constant temperature chamber)

  • 김종열
    • 융합신호처리학회논문지
    • /
    • 제22권3호
    • /
    • pp.116-121
    • /
    • 2021
  • 에너지를 절약하기 위해 고효율 히트펌프를 개발하기 위한 많은 연구가 이루어지고 있으며, 실외기 코일에 발생하는 서리가 발생하는 현상을 줄이거나 없애기 위한 연구도 동시에 이루어지고 있다. 계절과 관계없이 히트펌프의 실외기에 서리가 발생하지 않는 연구를 진행할 수 있도록 자연 상태와 동일한 조건에서 실험할 수 있는 곡선형 항온챔버를 구축하였다. 이러한 곡선형 항온챔버가 실험 장치로서 타당성을 갖추고 있는지 검증하기 위해 시뮬레이션을 하였다. CFD 조건은 곡선형 항온챔버 내에 위치한 실외기 앞의 직선형 덕트 길이를 덕트 관경의 1배, 5배, 10배, 15배로 하였다. 그 결과 덕트 관경의 10배 길이로 시뮬레이션했을 때 자연 상태와 가장 유사하다는 것을 알게 되었다.

초임계상태 이산화탄소의 정사각 단면 직덕트 내 난류유동 및 열전달의 전산해석 (Numerical Analysis of Turbulent Carbon Dioxide Flow and Heat Transfer under Supercritical State in a Straight Duct with a Square Cross-Section)

  • 최영돈;주광섭;김용찬;김민수
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1004-1013
    • /
    • 2002
  • Turbulent carbon dioxide flows and cooling heat transfers under supercritical state in a straight duct with a square cross-section are numerically analyzed employing low Reynolds number $\kappa-\varepsilon$ model and algebraic stress model. The flow is assumed to be (quasi-incompressible. Predicted Nusselt number and friction factor are compared with the experimental data, Blasius correlation for friction factor and Dittus-Boelter correlation for Nusselt number. Computational results for the Fanning's friction factor agree well with the all Rohsenow and Choi's correlation, Liou and Hwang's experimental data and Blasius correlation. The results obtained by algebraic stress model agree more with the Liou and Hwang's experimental data, while the results obtained by low Reynolds number $\kappa-\varepsilon$ model agree more with Blasius correlation. In the computation of Nusselt number, Dittus-Boelter correlation can not exactly fit the computational results. Therefore we propose the new correlation$Nu=0.053Re^{0.73}Pr^{0.4}$for the turbulent cooling heat transfer of carbon dioxide under supercritical state.