Numerical Analysis of Turbulent Carbon Dioxide Flow and Heat Transfer under Supercritical State in a Straight Duct with a Square Cross-Section

초임계상태 이산화탄소의 정사각 단면 직덕트 내 난류유동 및 열전달의 전산해석

  • Published : 2002.12.01

Abstract

Turbulent carbon dioxide flows and cooling heat transfers under supercritical state in a straight duct with a square cross-section are numerically analyzed employing low Reynolds number $\kappa-\varepsilon$ model and algebraic stress model. The flow is assumed to be (quasi-incompressible. Predicted Nusselt number and friction factor are compared with the experimental data, Blasius correlation for friction factor and Dittus-Boelter correlation for Nusselt number. Computational results for the Fanning's friction factor agree well with the all Rohsenow and Choi's correlation, Liou and Hwang's experimental data and Blasius correlation. The results obtained by algebraic stress model agree more with the Liou and Hwang's experimental data, while the results obtained by low Reynolds number $\kappa-\varepsilon$ model agree more with Blasius correlation. In the computation of Nusselt number, Dittus-Boelter correlation can not exactly fit the computational results. Therefore we propose the new correlation$Nu=0.053Re^{0.73}Pr^{0.4}$for the turbulent cooling heat transfer of carbon dioxide under supercritical state.

Keywords

References

  1. Proc of the 19th International Congress of Refrigeration Recent Advances in CO₂ Refigeration Pettersen, J.;Neksa, J.;Nesje, O. M.;Schiefloe, P. A.;Rekstad, H.
  2. HVAC & Research v.4 no.3 Pitla, S. S.;Robinson, D. M.;Groll, E. A.;Ramadhyani, S.
  3. International Journal of Refrigeration Efficiencies of Transcritical Carbon Dioxide Cycle with and without an Expansion Turbine Robinson, D.;Groll, E.
  4. Advances in Heat Transfer v.6 Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties Petukhov, B. S.
  5. Teplofiz. Vysok. Temperatur v.4 no.3 Krasnosh Chekov, E. A.
  6. AIAA Journal v.24 no.12 Improved Forced Convective Heat Transfer Correlations for Liquids in the Near Critical Region Ghajar, A. I.;Asadi, A.
  7. Teplofizika Vysokikh Temperatur v.9 no.6 A Generalized Relationship for Calculation of Heat Transter Carbon Dioxide and Supercritical Pressure Krasnoshchekov, E. A.;Protopov, V. S.
  8. Thermal Engineering v.32 no.3 Heat Transfer and Resistence of Carbon Dioxide Being Cooled in the Supercritical Region Petrov, N. E.;Popov, V. N.
  9. Teplofizika Vysokikh Temperature v.7 no.5 Local Heat Transfer of Carbon Dioxide at Supercritical Pressure under Cooling conditions Krasnoshchekov, E. A.;Kuraeva, I. A.;Protopopov, V. S.
  10. Determination of Heat Transfer Coefficients During In-Tube Gas Cooling of Supercritical Carbon Dioxide Robinson, D. M.;Eckhard, S. P.;Groll, E. A.;Ramadhyani, S.
  11. J. Fluids Mech. v.140 Calculation of Turbulence-Driven Secondary Motion in Non-Circular Ducts Demuren, A. O.;Rodi, W.
  12. Trans, of the ASME, Journal of Heat Transfer v.121 Improved Modeling of Turbulent Forced Convective Heat Transfer in Straight Ducts Rokni, M.;Sunden, B.
  13. J. Fluids Mech. v.244 Numerical Simulation of Low-Reynolds-Number Turbulent Flow Through a Straight Square Duct Gavrilakeis, S. K.
  14. Computation & Fluid v.27 Numerical Simulation of a Turbulent Flow Near a Right-Angled Corner Using the Speziale Non-linear Model with RNG κ-ε Equation Mompean, G. K.
  15. J. of Fluid Mech. v.257 Direct Numerical Simulation of Turbulent Flow in a square Duct Huser, A.;Biringen, S.
  16. Int. J. Heat & Fluid Flow v.18 Turbulent Heat Transfer in a Square Duct Hirota, M.;Fujita, H.;Yokosaw, H.;Nakai, H.;Itoh, H.
  17. Phd. Thesis, Korea University A Study on the Development and Application of Low Reynolds Number Second Moment Turbulent Closure Shin, J. K.
  18. Trans. of KSME B v.20 no.8 Developing of Low Reynolds Number Second Moment Turbulence Closure Shin, J. K.;Choi, Y. D.
  19. Proc. 8th Turbulent Shear Flow Symposium v.2 Progress and Paradoxes in Modeling NearWall Turbulence Launder, B. E.;Tselepidakeis, D. P.
  20. KSME International Journal v.15 no.30 Multiple Source Modeling of Low-Reynolds-Number Dissipation Rate Equation with Aids of DNS Choi, Y. D.;Shin, J. K.;Chun, K. H.
  21. Int. J. Heat and Fluid Flow v.10 no.4 Second-Moment Closure: Present and Future Launder, B. Z.
  22. Int. J. Heat & Mass Transfer v.15 A Calculation Procedure of a Heat and Momentum Transfer in Three Dimensional Parabolic Flow Patankar, S. V.;Spalding, D. B.
  23. The Aeronautical Quarterly v.26 Numerical Computation of the Flow in Curved Ducts Pratap, V. S.;Spalding, D. B.
  24. Ph. D. Thsis, Imperoal College University Flow and Heat Transfer in Curved Ducts Pratap, V. S.
  25. Fluids Mechanics White, F. M.
  26. Heat Rohsenow, W. M.;Choi, H. Y.
  27. Journal of Heat Transfer, Trans. of ASME v.114 Turbulent Heat Transfer Angumentation and Friction in Periodic Fullt Developed Channel Flows Liou, T. M.;Hwang, J. J.