• Title/Summary/Keyword: straight blade

Search Result 43, Processing Time 0.024 seconds

Aerodynamic Analysis and System Implementation of Vertical Axis Wind Turbine using Individual Blade Pitch Control Method (개별 블레이드 피치 제어 방식을 이용한 수직축 풍력발전기의 성능 해석 및 시스템 구현)

  • Jeong, In-Oh;Lee, Yun-Han;Hwang, In-Seong;Kim, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3347-3352
    • /
    • 2007
  • This paper describes a research for the performance improvement of the straight-bladed vertical axis wind turbine. To improve the performance of VAWT, the individual blade pitch control method is adopted. For the wind turbine, CFD analysis is carried out by changing blade pitch angle according to the change of wind speed and wind direction. By this method, capacity and power efficiency of VAWT are obtained according to the wind speed and rotating of rotor, and could predict the overall performance of VAWT. It was manufactured to verify performance of the experimental system that consists of rotor including four blades and base. Furthermore, torque sensor and power generator were installed. Also, active controller which can change the pitch angle of the individual blade according to the wind speed and direction was used.

  • PDF

Numerical study of airfoil thickness effects on the performance of J-shaped straight blade vertical axis wind turbine

  • Zamani, Mahdi;Maghrebi, Mohammad Javad;Moshizi, Sajad A.
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.595-616
    • /
    • 2016
  • Providing high starting torque and efficiency simultaneously is a significant challenge for vertical axis wind turbines (VAWTs). In this paper, a new approach is studied in order to modify VAWTs performance and cogging torque. In this approach, J-shaped profiles are exploited in the structure of blades by means of eliminating the pressure side of airfoil from the maximum thickness toward the trailing edge. This new profile is a new type of VAWT airfoil using the lift and drag forces, thereby yielding a better performance at low TSRs. To simulate the fluid flow of the VAWT along with J-shaped profiles originated from NACA0018 and NACA0030, a two-dimensional computational analysis is conducted. The Reynolds Averaged Navier-Stokes (RANS) equations are closed using the two-equation Shear Stress Transport (SST) turbulence model. The main objective of the study is to investigate the effects of J-shaped straight blade thickness on the performance characteristics of VAWT. The results obtained indicate that opting for the higher thickness in J-shaped profiles for the blade sections leads the performance and cogging torque of VAWT to enhance dramatically.

Calculation of three-dimensional flow in turbo impellers (터어보 回轉車 內의 3次元 流動의 數値計算)

  • 조강래;방영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.751-757
    • /
    • 1986
  • A three-dimensional calculation is presented on the basis of Wu's theory of quasi-three-dimensional flow in turbo impellers. For the calculation of flow on the Blade-to-Blade stream surface, the finite element method is applied. In this work it is shown that the Kutta condition and the periodicity can be satisfied rationally by the technique of combining a basic through flow in the flow passage and a circulating flow around the blade. The results of numerical calculation are compared with those of the exact solution of the Gostelow's straight cascade and of the experimental results of pressure distribution on the rotating blade surface. It is found that the numerical solutions are in good agreement with the theoretical solution and the experimental results.

Forced Vibration and Loads Analysis of Large-scale Wind Turbine Blades Considering Blade Bending and Torsion Coupling (굽힘 및 비틀림 연성 효과를 고려한 대형 풍력 터빈 블레이드의 강제 진동 및 하중 해석)

  • Kim, Kyung-Taek;Park, Jong-Po;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.256-263
    • /
    • 2008
  • The assumed modes method is developed to derive a set of linear differential equations describing the motion of a flexible wind turbine blade and to propose an approach to investigate the forced responses result from various wind excitations. In this work, we have adopted Euler beam theory and considered that the root of the blade is clamped at the rigid hub. And the aerodynamic parameters and forces are determined based on Blade Element Momentum (BEM) theory and quasi-steady airfoil aerodynamics. Numerical calculations show that this method gives good results and it can be used fur modeling and the forced vibration analysis including the coupling effect of wind-turbine blades, as well as turbo-machinery blades, aircraft propellers or helicopter rotor blades which may be considered as straight non-uniform beams with built-in pre-twist.

  • PDF

Effects of Incidence Angle on the Three-Dimensional Flow and Aerodynamic Loss Downstream of a High-Turning Turbine Rotor Blade (입사각이 고선회 터빈 동익 하류에서의 3차원 유동 및 압력손실에 미치는 영향)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2591-2596
    • /
    • 2007
  • The effect of incidence angle on the three-dimensional flow and aerodynamic loss in the downstream region of a high-turning turbine rotor blade has been investigated with a straight miniature five-hole probe. The incidence angle is changed to be +10, +5, 0, -10, -20, -30 and -40 degrees. The results show that the positive incidence reinforces the three-dimensional vortical flows within the turbine passage including the passage vortex, but the negative incidence weaken them significantly. A small increment in the positive incidence angle results in a remarkable aerodynamic loss increase, while increasing the incidence angle in the negative range leads to a very small change in the aerodynamic loss.

  • PDF

Flow Analysis of Centrifugal Compressor Using Quasi-Three-Dimensional Analysis (원심압축기의 유동해석을 위한 준삼차원 해석기법)

  • Ahn, S.J.;Kim, K.Y.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.30-36
    • /
    • 2003
  • This paper presents the analysis of flows through three different types of radial compressor impeller by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no backsweep. The results are compared with experimental data and the results of three-dimensional inviscid analysis with those by finite element method. It is found that the agreements with experimental data are good for the cases where viscous effects are not dominant.

Flow Analysis of Centrifugal Compressor Using Quasi-Three-Dimensional Analysis (원심압축기의 유동해석을 위한 준삼차원 해석기법)

  • Ahn, S. J.;Oh, H. W.;Kim, K. Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.106-112
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor impeller by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

Performance Prediction of Centrifugal Compressor Impellers using Quasi-Three-Dimensional Analysis (준삼차원 방법에 의한 원심 압축기의 성능예측)

  • Ahn, S.J.;Oh, H.W.;Kim, K.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.628-633
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

Experimental Investigation on the Hydraulic Performance of the Regenerative Pump According to the Blade Angle (재생 펌프의 날개 각도에 따른 성능 변화에 관한 실험적 연구)

  • Yoo, Il Su;Choi, Won Chul;Park, Mu Ryong;Lee, Gong Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.5-10
    • /
    • 2013
  • The regenerative pump is a kind of turbomachine which is capable of developing high pressure rise at relatively lower flow rates compared to the centrifugal and axial pumps. Although the efficiency of regenerative pumps is much lower than other turbomachines, still they have been widely used in many industrial applications for working at low specific speeds. There are some theoretical models to analysis the pump performance, however, the effect of the blade angle on the pump performance has not been covered in any model to date. In the present study, experimental study on the regenerative pump performance according to the impeller blade angle and its shape has been carried out. The straight radial blades with forward, backward and chevron blades which have inclined angles of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ were tested. The pump performance characteristics as the pressure head, efficiency were obtained depending on the flow rate for every impeller, and their results, expressed in appropriate non-dimensional coefficients, were compared and analysed in detail. From the experimental results, it was found that the pressure head and the efficiency depend strongly on the blade angles as well as the blade type. These experimental data has made it possible to better understand the effects of the blade angle on the pump performance, and widen the applicability of the current performance analysis and design models with including the effect of blade angles.

A Study on the Wear of Rotary Blades (로타리 경운날의 마모에 관한 연구)

  • Choi, S.I.;Kim, J.H.;Lee, Y.K.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 1993
  • Wearness has been a major failure criterion in Korean-made rotary blade. However, few studies have been conducted to improve it. In this study, the fundamental data obtained from the measurement of wearness and failure of rotary blade were analyzed to provide a guideline for the design of rotary blades. For the straight part(about 20-23 em from bolt hole) from the bolt hole to bending point of rotary blade, modifications were proposed for improvements, however, for the portion from bending point to tip was made no design recommendations because the failure behavior of that portion was difficult to analyze with the experimental data. The results are summarized as follows. 1. The current V-shape section has to be moved about 5 em toward the bending point of rotary blade. 2. The section modulus at the portion about 5-7 em distant from bolt hole has to be increased about 15-20 %. 3. The V-shape section has to be changed into U-shape to reduce the on account of recieving initial stress in blades. 4. The radius of curvature of the neck(the portion about 5-7 cm apart from bolt hole) has to be made larger to decrease the stress concentration.

  • PDF