• Title/Summary/Keyword: story model

Search Result 813, Processing Time 0.028 seconds

Efficient Floor Vibration Analysis in A Shear Wall Building Structure (벽식구조물의 효율적인 연직진동해석)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.55-66
    • /
    • 2004
  • Recently, many high-rise apartment buildings using the box system, composed of only reinforced concrete walls and slabs, have been constructed. In residential buildings such as apartments, vibrations occur from various sources and these vibrations transfer to neighboring residential units through walls and slabs. It is necessary to use a refined finite element model for an accurate vibration analysis of shear wall building structures. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Therefore, an efficient analytical method, which has only translational DOFs perpendicular to walls or slabs by the matrix condensation technique, is proposed in this study to obtain accurate results in significantly reduced computational time. If all of the DOFs except those perpendicular to walls or slabs in the shear wall structure eliminated using the matrix condensation technique at a time, the computational time for the matrix condensation would be significant. Thus, the modeling technique using super elements and substructuring technique is proposed to reduce the computational time for the matrix condensation. Dynamic analysis of 3-story and 5-story shear wall example structures were performed to verify the efficiency and accuracy of the proposed method. It was confirmed that the proposed method can provide the results with outstanding accuracy requiring significantly reduced computational time and memory.

Design of an Excitation System for Simulating Wind-Induced Response and Evaluating Wind-load Resistance Characteristics (건축구조물의 풍하중 구현 및 풍특성 평가를 위한 가진시스템 설계)

  • Park, Eun-Churn;Lee, Sung-Kyung;Min, Kyung-Won;Chun, Lan;Kang, Kyung-Soo;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.769-778
    • /
    • 2007
  • In this paper, excitation systems using linear mass shaker (LMS) and active tuned mass damper (ATMD) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop function are used such that the error between the wind and actuator induced responses is minimized by preventing the actuator from exciting unexpected modal response and initial transient response. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

Analysis of conflict intensity and VST factor In the Animation conflict scene (애니메이션 갈등장면에서의 갈등강도와 VST요소 분석)

  • Lee, Tae Rin;Chen, Danni;Wang, YuChao;Kim, Jae Ho
    • Korea Science and Art Forum
    • /
    • v.29
    • /
    • pp.279-292
    • /
    • 2017
  • This study was started by recognizing that visual storytelling(VST) is an important factor that determines the success of the work. The goal of this study is to analyze the VST study approaching from the narrative and visual dimension by analyzing the conflict intensity and VST factor. Therefore, in this paper, we analyzed the conflicts of the theater animation(4) that succeeded in the worldwide success and attempted the VST interpretation by approaching it technically. The results and contents of the study are as follows. Firstly, based on the narrative theory of Sung bong-Sun and Robert McKee, we classified the conflict scenes and found the kinds of conflicts. In addition, based on the 5B model, a total of 108 conflict shots were extracted. Secondly, through expert experiment, we found the conflict intensity of conflict shots. Thirdly, the visual elements of fifteen significant conflicts were extracted from internal and super individual conflicts. Fourth, as a result of the experiment, it was confirmed that the reliability of the visual elements in the inner and super personal conflicts was in the range of 100-83.33%, and the frequency of usage was found to be widely distributed in 5.88-70.59% and 5-70%. This means that the VST expression, which relied on the sense of the artist, can be engineered. Finally, I expect that it will be the basis of the development of the VST Tool which can predict the conflict expression of the work in the animation pre - production stage successfully.

Quantitative Analysis on Intensity of 1936 Jirisan Earthquake by Estimating Seismic Response Characteristics at the Site of Five-story Stone Pagoda in Ssang-gye-sa (쌍계사 오층 석탑 부지의 지진 응답 특성 평가를 통한 1936년 지리산 지진 세기의 정량적 분석)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Jae-Kwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.187-196
    • /
    • 2008
  • An earthquake of magnitude 5.0 occurred at Ssang-gye-sa, a Buddhist temple in Jirisan, located near the southern border of the Korean peninsula on 4 July 1936. It resulted in severe damage of several buildings and structures in Ssang-gye-sa. Particularly, the top component of a five-story stone pagoda in the temple was tipped over and fell down during the earthquake. This earthquake damage case would be usefully applied to estimating the intensity of ground motion in the Korean peninsula, a moderate seismicity region, where strong motion has never been recorded with the exception of historic seismic events. In order to estimate the local site effects and the corresponding ground motion at Ssang-gye-sa site, intensive site investigations including borehole drilling and in-situ seismic tests such as crosshole and SASW tests were performed in the temple area. Based on the site characteristics, site-specific seismic response analyses using various input motions were conducted for a representative Ssang-gye-sa site by means of both one-dimensional equivalent-linear and nonlinear methods with six input rock outcrop acceleration levels ranging from 0.044g to 0.220g. The resultant site-specific seismic responses indicated the amplified ground motions in the short-period range near the site period of Ssang-gye-sa. Furthermore, the intensity on rock outcrop of the 1936 Jirisan earthquake was estimated by making a comparison between the site responses analysis results in this study and the full-scaled seismic test of pagoda model in the prior study.

A Study on the Behavior of Blasting Demolition for a Reinforced Concrete Structure Using Sealed Model Test and Particle Flow Analysis (축소모형실험과 입자결합모델 해석을 통한 철근 콘크리트 구조물의 발파해체 거동에 관한 비교 분석)

  • 채희문;전석원
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2004
  • In this study, a comparison was made between the resulting behaviors of scaled model test and particle flow analysis for blasting demolition of a reinforced concrete structure. For the test and analysis, a progressive failure of a five-story structure was considered. The dimension analysis was carried out to properly scale down the real structure into the laboratory size. The test model was made of the mixture of gypsum, sand and water along with soldering lead to analogy reinforcing steel bars. The ratio of mixing components was chosen to best represent the scaled down strength and deformation modulus. The columns and girders of the structure were precasted in the laboratory and assembled right before the blasting test. The numerical analysis of the blasting demolition was carried out using PFC2D (Particle Flow Analysis 2-Dimension by Itasca). The results of the blasting of concrete lahmen structure showed roughly identical demolition behavior between scaled model test and numerical test. For the blasting of the reinforced concrete structure, the results were more identical and closer to the real demolition behavior, since the demolition behavior was better represented in this case due to the increased tensile strength of the component.

Study on the Nonlinear Analysis Model for Seismic Performance Evaluation of School Buildings Retrofitted with Infilled Steel Frame with Brace (철골 끼움가새골조로 보강된 학교건물의 내진성능평가를 위한 비선형 해석 모델에 관한 연구)

  • Yoo, Suk-Hyeong;Ko, Kwan-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.65-72
    • /
    • 2022
  • Recently, damage to buildings due to earthquakes in Korea occurred mainly in school buildings and Piloti-type multi-family houses, highlighting the need for seismic retrofit for buildings of the same type. In the early days of the seismic retrofit project for school facilities, various patented methods using dampers as a ductile seismic retrofit method were applied without sufficient verification procedures. However, in 「School Facility Seismic Performance Evaluation and Retrofit Manual, 2021」, when the patented method is applied, it must be applied through a separate strict verification procedure, and instead, the strength/stiffness retrofit method was induced as a general method. In practice,when evaluating seismic performance for retrofit by infilled steel frame with brace, the analysis model is constructed by directly connecting only the steel brace to the existing RC member. However, if the frame is removed from the analysis model of the infilled steel frame with brace, the force reduction occurring on the existing RC member near the retrofit is considered to be very large, and this is judged to affect the review of whether to retrofit the foundation or not. Therefore, in this study, preliminary analysis with variables such as whether or not steel frame is taken into account and frame link method for the analysis model of RC school building retrofitted by infilled steel frame with brace and nonlinear analysis for actual 3-story school building was performed, and basic data for rational analysis model setting were presented by comparing preliminary analysis and pushover analysis results for each variable.

Social Network Analysis of TV Drama via Location Knowledge-learned Deep Hypernetworks (장소 정보를 학습한 딥하이퍼넷 기반 TV드라마 소셜 네트워크 분석)

  • Nan, Chang-Jun;Kim, Kyung-Min;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.11
    • /
    • pp.619-624
    • /
    • 2016
  • Social-aware video displays not only the relationships between characters but also diverse information on topics such as economics, politics and culture as a story unfolds. Particularly, the speaking habits and behavioral patterns of people in different situations are very important for the analysis of social relationships. However, when dealing with this dynamic multi-modal data, it is difficult for a computer to analyze the drama data effectively. To solve this problem, previous studies employed the deep concept hierarchy (DCH) model to automatically construct and analyze social networks in a TV drama. Nevertheless, since location knowledge was not included, they can only analyze the social network as a whole in stories. In this research, we include location knowledge and analyze the social relations in different locations. We adopt data from approximately 4400 minutes of a TV drama Friends as our dataset. We process face recognition on the characters by using a convolutional- recursive neural networks model and utilize a bag of features model to classify scenes. Then, in different scenes, we establish the social network between the characters by using a deep concept hierarchy model and analyze the change in the social network while the stories unfold.

Ductility-based design approach of tall buildings under wind loads

  • Elezaby, Fouad;Damatty, Ashraf El
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • The wind design of buildings is typically based on strength provisions under ultimate loads. This is unlike the ductility-based approach used in seismic design, which allows inelastic actions to take place in the structure under extreme seismic events. This research investigates the application of a similar concept in wind engineering. In seismic design, the elastic forces resulting from an extreme event of high return period are reduced by a load reduction factor chosen by the designer and accordingly a certain ductility capacity needs to be achieved by the structure. Two reasons have triggered the investigation of this ductility-based concept under wind loads. Firstly, there is a trend in the design codes to increase the return period used in wind design approaching the large return period used in seismic design. Secondly, the structure always possesses a certain level of ductility that the wind design does not benefit from. Many technical issues arise when applying a ductility-based approach under wind loads. The use of reduced design loads will lead to the design of a more flexible structure with larger natural periods. While this might be beneficial for seismic response, it is not necessarily the case for the wind response, where increasing the flexibility is expected to increase the fluctuating response. This particular issue is examined by considering a case study of a sixty-five-story high-rise building previously tested at the Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario using a pressure model. A three-dimensional finite element model is developed for the building. The wind pressures from the tested rigid model are applied to the finite element model and a time history dynamic analysis is conducted. The time history variation of the straining actions on various structure elements of the building are evaluated and decomposed into mean, background and fluctuating components. A reduction factor is applied to the fluctuating components and a modified time history response of the straining actions is calculated. The building components are redesigned under this set of reduced straining actions and its fundamental period is then evaluated. A new set of loads is calculated based on the modified period and is compared to the set of loads associated with the original structure. This is followed by non-linear static pushover analysis conducted individually on each shear wall module after redesigning these walls. The ductility demand of shear walls with reduced cross sections is assessed to justify the application of the load reduction factor "R".

Framework for Improving Mobile Embedded Software Process (모바일 임베디드 소프트웨어 프로세스 개선 프레임워크)

  • Shin, Seung-Woo;Kim, Haeng-Kon;Kim, Soung-Won
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.195-209
    • /
    • 2009
  • The embedded software has been become more important than the hardware in mobile systems in ubiquitous society. The improvement models such as CMMI(Capability Maturity Model Integration) and SPICE(Software Process Improvement and Capability dEtermination) are used to improve the quality of software in general systems. Software process improvement is also necessary for mobile embedded software development to improve its quality. It is not easy to apply the general software improvement model to the mobile embedded software development due to the high cost effectiveness and heavy process. On the other hand, XP has the characteristics on focused communications with customers and iteration development. It is specially suitable for mobile embedded software development as depending on customer's frequent requirement changes and hardware attributes. In this paper, we propose a framework for development small process improvement based XP(eXtreme Programming)'s practice in order to accomplish CMMI level 2 or 3 in mobile embedded software development at the small organizations. We design and implement the Mobile Embedded Software Process Improvement System(MESPIS) to support process improvement. We also suggest the evaluation method for the mobile embedded software development process improvement framework with CMMI coverage check by comparing other process improvement model. In the future, we need to apply this proposed framework to real project for practical effectiveness and the real cases quantitative. It also include the enhance the functionality of MESPIS.

  • PDF

The Development of Robot and Augmented Reality Based Contents and Instructional Model Supporting Childrens' Dramatic Play (로봇과 증강현실 기반의 유아 극놀이 콘텐츠 및 교수.학습 모형 개발)

  • Jo, Miheon;Han, Jeonghye;Hyun, Eunja
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.4
    • /
    • pp.421-432
    • /
    • 2013
  • The purpose of this study is to develop contents and an instructional model that support children's dramatic play by integrating the robot and augmented reality technology. In order to support the dramatic play, the robot shows various facial expressions and actions, serves as a narrator and a sound manager, supports the simultaneous interaction by using the camera and recognizing the markers and children's motions, records children's activities as a photo and a video that can be used for further activities. The robot also uses a projector to allow children to directly interact with the video object. On the other hand, augmented reality offers a variety of character changes and props, and allows various effects of background and foreground. Also it allows natural interaction between the contents and children through the real-type interface, and provides the opportunities for the interaction between actors and audiences. Along with these, augmented reality provides an experience-based learning environment that induces a sensory immersion by allowing children to manipulate or choose the learning situation and experience the results. In addition, the instructional model supporting dramatic play consists of 4 stages(i.e., teachers' preparation, introducing and understanding a story, action plan and play, evaluation and wrapping up). At each stage, detailed activities to decide or proceed are suggested.