• 제목/요약/키워드: story damage

검색결과 362건 처리시간 0.029초

Vibration-mode-based story damage and global damage of reinforced concrete frames

  • Guo, Xiang;He, Zheng
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.589-598
    • /
    • 2018
  • An attempt is conducted to explore the relationship between the macroscopic global damage and the local damage of shear-type RC frames. A story damage index, which can be expressed as multi-variate functions of modal parameters, is deduced based on the tridiagonal matrix of the shear-type frame. The global damage model is also originated from structural modal parameters. Due to the connection of modal damage indexes, the relationship between the macroscopic global damage and the local story damage is reasonably established. In order to validate the derivation, a case study is carried out via an 8-story shear-type frame. The sensitivities of modal damage indexes to the location and severity of local story damages are studied. The evolution of the global damage is investigated as well. Results show that the global damage is sensitive to the degree of story damage, but it's not sensitive to its location. As the number of the damaged stories increases, more and more modes will be involved. Meanwhile, the global damage evolution curve changes from the concave shape to the S-type and then finally transforms into the convex shape. Through the proposed story damage, modal damage and global damage model, a multi-level damage assessment method is established.

Model updating and damage detection in multi-story shear frames using Salp Swarm Algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.63-73
    • /
    • 2019
  • This paper studies damage detection as an optimization problem. A new objective function based on changes in natural frequencies, and Natural Frequency Vector Assurance Criterion (NFVAC) was developed. Due to their easy and fast acquisition, natural frequencies were utilized to detect structural damages. Moreover, they are sensitive to stiffness reduction. The method presented here consists of two stages. Firstly, Finite Element Model (FEM) is updated. Secondly, damage severities and locations are determined. To minimize the proposed objective function, a new bio-inspired optimization algorithm called salp swarm was employed. Efficiency of the method presented here is validated by three experimental examples. The first example relates to three-story shear frame with two single damage cases in the first story. The second relates to a five-story shear frame with single and multiple damage cases in the first and third stories. The last one relates to a large-scale eight-story shear frame with minor damage case in the first and third stories. Moreover, the performance of Salp Swarm Algorithm (SSA) was compared with Particle Swarm Optimization (PSO). The results show that better accuracy is obtained using SSA than using PSO. The obtained results clearly indicate that the proposed method can be used to determine accurately and efficiently both damage location and severity in multi-story shear frames.

Vibration-based method for story-level damage detection of the reinforced concrete structure

  • Mehboob, Saqib;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.29-39
    • /
    • 2021
  • This study aimed to develop a method for the determination of the damaged story in reinforced concrete (RC) structure with ambient vibrations, based on modified jerk energy methodology. The damage was taken as a localized reduction in the stiffness of the structural member. For loading, random white noise excitation was used, and dynamic responses from the finite element model (FEM) of 4 story RC shear frame were extracted at nodal points. The data thus obtained from the structure was used in the damage detection and localization algorithm. In the structure, two damage configurations have been introduced. In the first configuration, damage to the structure was artificially caused by a local reduction in the modulus of elasticity. In the second configuration, the damage was caused, using the Elcentro1940 and Kashmir2005 earthquakes in real-time history. The damage was successfully detected if the frequency drop was greater than 5% and the mode shape correlation remained less than 0.8. The results of the damage were also compared to the performance criteria developed in the Seismostruct software. It is demonstrated that the proposed algorithm has effectively detected the existence of the damage and can locate the damaged story for multiple damage scenarios in the RC structure.

지진 응답해석에 의한 보항복형 강구조 다층골조의 손상분포 (Damage Distribution of Weak Beam Type Multi-Story Steel Frames By Seismic Response Analysis)

  • 오상훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.241-248
    • /
    • 2000
  • In order to evaluate the limit earthquake resistance of multi-story steel frames influenced by the strength and stiffness ratios of members a series inelastic response analysis were carried out. From the analysis results the damage distribution rules of multi-story steel frames were proposed. Conclusions are summarized as follows. 1)As the stiffness ratio of beam and column becomes small damage concentrate on the lower end of columns of the first story. 2) Considering the strength and stiffness ratios of beam and column with weak beam type mechanism the equations predicting the damage distribution of multi-story steel frames were proposed.

  • PDF

A new statistical moment-based structural damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.445-466
    • /
    • 2008
  • This paper presents a novel structural damage detection method with a new damage index based on the statistical moments of dynamic responses of a structure under a random excitation. After a brief introduction to statistical moment theory, the principle of the new method is put forward in terms of a single-degree-of-freedom (SDOF) system. The sensitivity of statistical moment to structural damage is discussed for various types of structural responses and different orders of statistical moment. The formulae for statistical moment-based damage detection are derived. The effect of measurement noise on damage detection is ascertained. The new damage index and the proposed statistical moment-based damage detection method are then extended to multi-degree-of-freedom (MDOF) systems with resort to the leastsquares method. As numerical studies, the proposed method is applied to both single and multi-story shear buildings. Numerical results show that the fourth-order statistical moment of story drifts is a more sensitive indicator to structural stiffness reduction than the natural frequencies, the second order moment of story drift, and the fourth-order moments of velocity and acceleration responses of the shear building. The fourth-order statistical moment of story drifts can be used to accurately identify both location and severity of structural stiffness reduction of the shear building. Furthermore, a significant advantage of the proposed damage detection method lies in that it is insensitive to measurement noise.

Seismic vulnerability assessment of low-rise irregular reinforced concrete structures using cumulative damage index

  • Shojaei, Fahimeh;Behnam, Behrouz
    • Advances in concrete construction
    • /
    • 제5권4호
    • /
    • pp.407-422
    • /
    • 2017
  • Evaluating seismic performance of urban structures for future earthquakes is one of the key prerequisites of rehabilitation programs. Irregular structures, as a specific case, are more susceptible to sustain earthquake damage than regular structures. The study here is to identify damage states of vertically irregular structures using the well-recognized Park-Ang damage index. For doing this, a regular 3-story reinforced concrete (RC) structure is first designed based on ACI-318 code, and a peak ground acceleration (PGA) of 0.3 g. Some known vertical irregularities such as setback, short column and soft story are then applied to the regular structure. All the four structures are subjected to seven different earthquakes accelerations and different amplitudes which are then analyzed using nonlinear dynamic procedure. The damage indices of the structures are then accounted for using the pointed out damage index. The results show that the structure with soft story irregularity sustains more damage in all the earthquake records than the other structures. The least damage belongs the regular structure showing that different earthquake with different accelerations and amplitudes have no significant effect on the regular structures.

층강성 손상비를 이용한 전단형 건물의 손상위치 추정에 관한 연구 (Study on The Damage Location Detection of Shear Building Structures Using The Degradation Ratio of Story Stiffness)

  • 유석형
    • 대한건축학회논문집:구조계
    • /
    • 제34권2호
    • /
    • pp.3-10
    • /
    • 2018
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. In practice the measured difference of natural frequencies represent the stiffness change reliably, however the measured mode shape is insensitive for stiffness change, but provides spatial information of damage. The damage detection index on shear building structures is formulated in this study. The damage detection index could be estimated from mode shape and srory stiffness of undamaged structure and frequency difference between undamaged and damaged structure. For the verification of the observed damage detection method, the numerical analysis of Matlab and MIDAS and shacking table test were performed. In results, the damage index of damaged story was estimated so higher than undamaged stories that indicates the damaged story apparently.

Cyclic testing of scaled three-story special concentrically braced frame with strongback column

  • Chen, Chui-Hsin;Tsai, Yi-Rung;Tang, Yao
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.163-173
    • /
    • 2019
  • For Special Concentrically Braced Frame (SCBF), it is common that the damage concentrates at a certain story instead of spreading over all stories. Once the damage occurs, the soft-story mechanism is likely to take place and possibly to result in the failure of the whole system with more damage accumulation. In this study, we use a strongback column which is an additional structural component extending along the height of the building, to redistribute the excessive deformation of SCBF and activate more structural members to dissipate energy and thus avoid damage concentration and improve the seismic performance of SCBF. We tested one-third-scaled, three-story, double-story X SCBF specimens with static cyclic loading procedure. Three specimens, namely S73, S42 and S0, which represent different combinations of stiffness and strength factors ${\alpha}$ and ${\beta}$ for the strongback columns, were designed based on results of numerical simulations. Specimens S73 and S42 were the specimens with the strongback columns, and S0 is the specimen without the strongback column. Test results show that the deformation distribution of Specimen S73 is more uniform and more brace members in three stories perform nonlinearly. Comparing Drift Concentration Factor (DCF), we can observe 29% and 11% improvement in Specimen S73 and S42, respectively. This improvement increases the nonlinear demand of the third-story braces and reduces that of the first-story braces where the demand used to be excessive, and, therefore, postpones the rupture of the first-story braces and enhances the ductility and energy dissipation capacity of the whole SCBF system.

보 붕괴형 메커니즘을 가지는 강구조 다층골조의 손상분포 (Damage Distribution Rule of Weak Beam Type Multi-Story Steel Frames Influenced by Strength and Stiffness Ratios of Beam and Column)

  • 오상훈;유홍식;문태섭
    • 한국지진공학회논문집
    • /
    • 제9권5호
    • /
    • pp.53-61
    • /
    • 2005
  • 부재의 내력비, 강성비에 영향을 받는 다층 강구조 골조의 내진성능을 평가하기 위하여 내력비 및 강성비를 설계 파라메타로 하여 동적 비탄성 응답해석을 수행하였다. 해석 결과에 대한 분석을 통하여 내력비와 강성비의 변화폭이 큰 다층골조의 손상분포 예측식을 제안하였다. 본 연구에서 얻어진 결과는 다음과 같이 요약할 수 있다. 1) 보기둥 내력비 및 강성비가 작아질수록 1층의 기둥 주각부에서의 손상집중 현상이 크게 나타났다. 2) 보기둥 내력비 및 강성비를 고려하여 보붕괴형 강구조 다층골조의 손상분포를 예측할 수 있는 식을 제안하였으며, 예측식은 응답해석 결과와 좋은 대응을 보였다. 3) 본 연구에서 제안한 손상분포 예측식은 강접 및 반강접 보붕괴형 강구조 다층골조의 손상분포를 예측할 수 있을 것으로 판단된다.

Damage detection of mono-coupled multistory buildings: Numerical and experimental investigations

  • Xu, Y.L.;Zhu, Hongping;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • 제18권6호
    • /
    • pp.709-729
    • /
    • 2004
  • This paper presents numerical and experimental investigations on damage detection of mono-coupled multistory buildings using natural frequency as only diagnostic parameter. Frequency equation of a mono-coupled multistory building is first derived using the transfer matrix method. Closed-form sensitivity equation is established to relate the relative change in the stiffness of each story to the relative changes in the natural frequencies of the building. Damage detection is then performed using the sensitivity equation with its special features and minimizing the norm of an objective function with an inequality constraint. Numerical and experimental investigations are finally conducted on a mono-coupled 3-story building model as an application of the proposed algorithm, in which the influence of modeling error on the degree of accuracy of damage detection is discussed. A mono-coupled 10-story building is further used to examine the capability of the proposed algorithm against measurement noise and incomplete measured natural frequencies. The results obtained demonstrate that changes in story stiffness can be satisfactorily detected, located, and quantified if all sensitive natural frequencies to damaged stories are available. The proposed damage detection algorithm is not sensitive to measurement noise and modeling error.